
Asymmetry and Long Memory Volatility: some empirical evidence 
using GARCH 

 
CHIN WEN CHEONG1 & ABU HASSAN SHAARI MOHD NOR2, ZAIDI ISA3 

 

1Faculty of Information Technology 
 Multimedia University  

63100 Cyberjaya,  Selangor, Malaysia 
 

2Faculty of Economic and Business,3Faculty of Science and Technology, 
 National University Malaysia  

43600 Bangi, Selangor, Malaysia 
                   http://pesona.mmu.edu.my/~wcchin 

 
 

Abstract: - This paper investigates the asymmetry and long memory volatility behaviour of the Malaysian 
Stock Exchange daily data over a period of 1991 to 2005.  The long-spanning data set enable us to examine 
piecewise before, during and after the economic crisis encountered in the Malaysian stock market.  The daily 
index returns are adjusted for infrequent trading effect and we employed the variance time plot and R/S 
approaches to test the fractal scaling behavior of the volatility.  The estimated Hurst parameter allows us to 
rank the market efficiency across the periods.  The leverage effect, clustering volatility and long memory 
behaviour of the volatility are fitted by the asymmetry GARCH models.  Across the periods, the results show 
the mixture of symmetry and asymmetry GARCH modelling.  
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1   Introduction 
The study of volatility is one of the prevailing 
features in financial markets.  Since the introduction 
of ARCH model by Engel[1] and GARCH by 
Bollerslev[2], there has been a numerous extension 
of ARCH models developed in specifying the 
conditional mean and conditional variance models.  
The recent survey of GARCH models are available 
in Degiannakis[3], Engle[4,5], and Poon and 
Granger[6].  The presence of conditional 
heteroskedaticity variance has an important 
implication and definition of market efficiency.  
Campbell et al.[7] categorized this process as a 
random walk 3(RW3) model with uncorrelated 
increments, but dependent with its squared 
increments.  The least restrictive RW3 provides the 
most interesting property that attracts market 
participants, where for information on the variance 
of historical prices is able to predict the future 
volatility of the equity markets 
     This findings have extended the traditional 
definition of market efficiency such as fractal 
market hypothesis by Peter[8], heterogeneous 
market hypothesis by Mullier et al[9] and mixture of 
distribution hypothesis by Andersen et al[10].  In 
Mandelbrot[11], he suggests that the weak form 
market efficiency is rejected  if the stock returns 

present long-range dependence behavior.   The 
traditional definition of market efficiency assumes 
that the market is composed of homogeneous 
participants who response according to the rational 
expectation strategy regardless of the amount of 
available information.  This assumption seems to be 
not reasonable in the real financial market.  No all 
market participants are provided with equivalent 
information.  As a conclusion, the above studies 
suggest that the presence of long-range dependence 
behavior in the equity markets and this fractal 
scaling behavior is important in measuring the 
volatility, market efficiency and market risk 
     In this paper, we include the infrequently trading 
adjustment, asymmetry and long-range dependence 
behaviors of the stock market in the model 
specifications.  In addition, the long memory 
estimation is used to rank the market efficiency 
across the predefined periods.  We consider the 
asymmetry and long memory GARCH models such 
as asymmetry component GARCH(CGARCH) by 
Ding and Granger[12], Engle and Lee[13] and Ding 
et al[14], symmetry and asymmetry fractionally 
integrated GARCH(FIGARCH and FIAPARCH) by 
Baillie et al[15] and Tse[16].  To analyse the 
performance of the asymmetry and long memory 
GARCH model, we estimate and compare them to a 
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benchmark symmetry and short persistence GARCH 
model for a long spanning daily returns series with 
four separate periods.   
     The non-linearity dependence is analyzed by 
using the BDS test to ensure the presence of iid 
condition. The results show mixture of GARCH 
models across the predefined periods.     As a result, 
the interesting case study of an emerging market 
using KLSE may imply significant contributions to 
the theoretical modelling and predictability of 
financial time series 
 
2   Methodology 
2.1 Long Memory Behavior Analysis 
The long-range dependence behavior is measured by 
the Hurst parameter(H) proposed by Hurst[17].  The 
long-range dependence behavior is measures by 
using variance time plot and R/S analysis.  The 
details of other common estimators are discussed in 
Mandelbrot[11] and Beran[18].  The absolute returns 
have been selected as the volatility proxy.  In this 
paper, we implement two approaches namely the 
ordinary approach where the Hurst’s parameter is 
determined over the entire periods and the dynamic 
approach with an average ‘moving’ Hurst’s 
parameter over a fixed interval.  The dynamic 
approach is similar to the ‘rolling sample’ approach 
discussed in [19,20].   
 
2.2 Long Memory GARCH 
The conditional mean equations of KLSE stock 
returns are an AR(1) model of {rt} as below:    

rt = µ +θrt-1 + at ,   (1) 

where the at is serially uncorrelated, but dependent 
to its lagged values or the conditional variance 
components as follow: at = σtεt   (2) 

2.2.1   Component GARCH 
Ding and Granger[12] and Engle and Lee[13] 
introduced the CGARCH that can capture the high 
persistence in volatilities.  Specifically, the 
CGARCH is decomposed into two components with 
one component captures the short-run innovation 
impact and the other captures the long-run impact of 
an innovation as follow:      
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permanent and transitory volatility components.  The 
short-run transitory effect is mean-reverts to zero at 

a rate of (α+β) under the condition of 0<(α+β)<1 
which behaves like a GARCH model.  The long-run 
volatility component converges to a constant level 
with the value of ω/(1-γ1q) which follows an AR(1) 
process if 0<γ1q<1.  Under this circumstance of 
0<(α+β)<γ1q <1, the permanent components has a 
much slower mean-reverting rate than the short run 
component.  The asymmetric CGARCH(1,1) can be 
estimated by including the asymmetric parameter φ 
in the transitory equation.  For instance, the specific 
case for δ=2, the transitory equation is estimated in 
the form: 
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where l is the dummy variable indicating negative 
innovation.  The positive value of φ shows that the 
presence of transitory leverage effects in the 
conditional variance. 
 
2.2.1   Fractionally Integrated GARCH 
We start with the GARCH(p,q) model introduced by 
Bollerslev[2] which can be written in the form of 
backshift/lag notation: 
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In Baillie et.al[15], the model’s coefficients of 

)( and )( BB αβ capture the shot-run of volatility 
while the fractional difference parameter d models 
the long run characteristics of volatility.  This model 
is named as fractional integrated GARCH or 
FIGARCH(p,d,q).  The conditional variance of 
FIGARCH(p,d,q), see Baillie et.al[15] is written in 
the form: 
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with 0 ≤ d ≤ 1. If d=0, the model will 
become 22 )()( tt aBB ασβ = , which is a GARCH 

model.  If d=1, the model 22 )()1)(( tt aBBB ασβ =− , 
will follow a IGARCH model.  And when d is 
0<d<0.5, the term (1-B)d has an infinite binomial 
distribution for non-integer powers.   
Finally the FIAPARCH(p,d,q), seeTse[16] is given 

by:
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2.3 Diagnostic Test 
The adequacies of the models are tested by using 
Ljung-Box statistics for both standardized and 
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squared standardized residuals.  In addition, the 
Engle LM ARCH test is implemented to ensure the 
absence of ARCH effect.  The BDS portmanteau 
test[21] for time based dependence in the 
standardized residuals is used to check whether the 
series are iid.  However, Brooks et al. [22,23] 
claimed that for a asymmetry conditionally 
heteroskedastic models, the BDS test is unable to 
detect a common mis-specification.  Due to this, the 
reliability of BDS test is further examined by using 
Engle and Ng[24] to determine the asymmetry 
volatility models response to news. 
 
3   Empirical Result 
The stock market price is taken from the daily 
closing price of Kuala Lumpur stock 
exchange(KLSE) through Bank Negara 
Malaysia[25].  This price index is weighted by 
market capitalisation with the base year 1977 of 100 
listed companies.  The selection guidelines of Kuala 
Lumpur composite index(KLCI) component can be 
found in the official website of Bursa Malaysia[26].  
The continuously compounded daily return at time t 
is defined as:  
     returnt = log(indext) – log(indext-1)    (8) 
 

 
Fig. 1: Kuala Lumpur Composite Index 

 
     The sample period starts from 1st January 1991 to 
14th April 2005 with 3516 observations.  The long-
spanning data set consists of 14 years enable us to 
run various tests with reliable statistical results.  
This is suggested by Taylor[27] that large sample 
size of stock prices series may improve the error 
variance and increase the power of random walk 
tests.  The KLSE trades five days a week, start from 
Monday through Friday.  In order to observe and 
analyze the behavior of the stock market, we split 
the overall sample data into four distinct periods for 
prices index as follows: 
 
I: pre-crisis(1-1-1991-31-12-1996) 
II: during crisis(1-1-1997-31-8-1998) 
III: USD pegged to RM(1-9-1998-31-12-2000) 
IV: post-crisis(1-1-2000-14-4-2005) 

 
 

Table 1. Descriptive statistics of Stock returns 
period Mean Std. Dev. Skewness Kurtosis Jarque Bera 
overall 0.0002 0.0160 0.5002 41.9528 222371* 

I 0.0006 0.0116 0.0979 10.3891 3378* 
II -0.0034 0.0267 1.5225 14.7613 2509* 
III 0.0016 0.0227 0.0219 39.0303 31859* 
IV 0.0002 0.0090 -0.6628 9.9181 2131* 

* denotes 1%   level of significance 

 
     A glance at the statistical behaviours of the five 
different time periods is illustrated in Table 1.  The 
descriptive statistics measure the moments, 
skewness, kurtosis and normality of the returns 
series.  The returns series show highest standard 
deviation and volatile in the crisis period(from 1997 
to 1998).  The huge magnitude of Jarque-Bera 
statistics in all periods, enable us to reject the return 
series is normally distributed by referring to the p-
values.  The returns series exhibit the fat tailed 
phenomenon and the kurtosis is less than 3 for all 
the periods. 

 
Table 2. Random Walk Model With Adjusted Return 
period a0 a1 Q(12) White’s  

statistics 
ARCH  

test 
overall 1.51x10-7  -0.0019 48.564 c 914 c   108.21 c   

I 4.11x10-7  0.0035 11.503 137.91 c 22.08 c 
II -1.09x10-5 0.0036 9.2567 1.00 1.17 
III -0.0001  0.0041 19.412a 350.66 c 2.25 c 
IV 2.02x10-5 -0.0007 13.347 9.12b 11.44c 

Model: rt(adj) = a0 + a1rt-1(adj) + εt 

a,b and c denote 10%, 5% and  1%   level of significance 
Q(m): Ljung-Box Q-statistics for serial correlation with lag-m 
White’s statistics: unconditional heteroscedasticity test 
LM ARCH test: conditional heteroscedasticity test 
 

     After the correction of thin trading effect, the 
adjustment appears to have eliminated the apparent 
serial correlation of the linear model across all the 
periods as shows in Table 2.  The coefficient, a1, is 
insignificantly different from zero at the 1% level 
for all the periods.  Across all the periods, only the 
residuals during the crisis period indicate a white 
noise process.  On the other periods, the diagnostic 
tests show mixture of autocorrelation, unconditional 
and conditional heteroscedasticity effect.  This leads 
to the conclusion of random walk process during the 
crisis period and acceptance of less stringent random 
walk process(RW2/3) with the relaxation of iid 
conditions in others periods. 
     The fractal behaviour is examines using different 
time-scale for example hourly, daily, weekly or 
monthly. The sample autocorrelation 
function(SACF) is plotted as the preliminary 
analysis.   The Hurst’s parameters for the different 
sub-sample periods are determined by using 
variance-time plot and R/S analysis.  Several studies 
of financial time series reported that the absolute 
values of returns exhibit long-range dependence 
behaviours. Due to this, we concentrate our analysis 
in the absolute returns series only.  
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Fig. 2. SACF of Absolute Returns of Overall period 

 
The results show that the highest inefficiency is 
during the crisis period, follows by pre-crisis, post-
crisis and USD pegged period.  The post-crisis 
period indicates the lowest inefficient as indicated in 
Table 3.   With the evidence of long-range 
dependence property, we reject the random walk 
hypothesis Malaysian stock market. 
 

Table 3. Ranking of Hurst’s parameter 
Period Hurst parameter ranking 

Pre-crisis 0.612 2 
Crisis 0.642 1 

USD pegged 0.589 4 
Post-crisis 0.609 3 

* denotes 1%   level of signific 
 
Table 4 report the estimated results for GARCH(1,1) 
CGARCH(1,1) and FIGARCH(1,d,1).  The 
asymmetry volatilities are significantly difference 
from zero in the pre-crisis and USD pegged periods 
in the asymmetry CGARCH(1,1) and 
FIAPARCH(1,d,1) models.  The fat tailed property 
of the volatility is fitted by assuming the, εt, as a 
GED distribution.  The ARCH and GARCH effects 
are represented by α and β for GARCH and 
FIGARCH.  In CGARCH, the persistent and 
transitory components are determined by the γ1q and 
γ1s in the CGARCH model respectively. 
    In Table 4, the CGARCH and FIGARCH provide 
a slightly statistical improvement over a symmetric 
GARCH based on the log likelihood and Akaike 
information criteria(AIC) evaluations.  Furthermore, 
the leverage effect of volatility is captured by φ and 
φc which statistically significant in pre-crisis and 
USD pegged periods.  This concludes that 
downward movements(shock) in the stock market 
are followed by a greater volatilities than upward 
movements of the same magnitude.  
The CGARCH(1,1) models show that the persistent 
components are all significant with γ1q close to one.  
The persistency is strongest in crisis period, follows 
by pre-crisis, post-crisis and weakest in USD pegged 
period.  This result is consistent with the values of d 
estimated in FIGARCH.  The long-range 
dependence coefficient is 0.49 and rose to the 
highest value at crisis period(d=0.76) and then 
dropped to 0.09 in the USD pegged period and 0.41 
in the post-crisis period.   

Table 4: Estimation results 
GARCH Overall  I  II III IV 

µ 0.0003a 0.0001 0.0017 a  -0.0005 0.00001 
θ 0.1114 c 0.0556b 0.0643 0.2214 c -0.0491 c 
α0 0.00001 c  0.00001 c  0.000003 0.00004 c 0.00003 c 
α1 0.1219 c 0.1089 c 0.1783 c  0.1241 c 0.2599 c 
β1 0.8676 c 0.8611 c 0.8566 c 0.6670 c 0.5213 c 
AIC -5.9763 -6.0322 -4.5811 -5.6075 -6.3479 
CGARCH Overall  I  II III IV 
µ 0.0003  0.0017 a -0.0002 0.00002 
θ 0.1094c 0.0471 a 0.0649 0.2288 c -0.0700 b 
ω 0.0002 c 0.0001 c 0.0107 0.0002 c 0.0001 c  
γ1q 0.9978 c 0.9883 c 0.9993 c 0.8175 c 0.8275 c 
γ2q 0.0142 c 0.0274 c 0.1483 c 0.1219 c 0.2697 c 
γ1s 0.8202 c 0.6837 c -0.5395 b -0.3432 b -0.7812 c 
γ2s 0.1259 c 0.0311 -0.1058 c -0.0864 a 0.0341 b 
φc  0.1333 c  0.2849 c  

AIC -6.0000 -6.0461 -4.5957 -5.6139 -6.3480 
FIGARCH Overall  I  II III IV 

µ 0.00005    0.0001 
θ 0.0688 c 0.0261 0.0586 0.2308 c -0.0779 c 
α0  1.1700    
α1 0.3000 c 0.3254 c 0.0325 0.7658 c 0.5741 c 
β1 0.5138 c 0.6403 c 0.7086 c 0.6500 c 0.7753 c 
φ 0.1786 c 0.1714a  0.1899 a  
δ 1.1659 c 1.4758 c  2.4584 c  
υ 1.2202 c 1.2311 c 1.1909 c) 1.2570 c 1.1782 c 
d 0.3774 c 0.4885 c 0.7615 c 0.0886 b 0.4107 c 

AIC -6.0681 -6.1213 -4.6179 -5.6109 -6.4391 

a,b and c denote 10%, 5% and  1%   level of significance 

 
     During the currency crisis period, the market 
shows the greatest strength of long-range 
dependence.  The weak performance of RM has 
caused the investors fled from the stock market.  As 
a result, most of the market participants tend to 
follow the trends and leave the stock market.  This is 
consistent with the study of Shiller[27] argued that 
most market participants are not ‘smart investor’ but 
rather followers to trends and fashions.   The 
strength of the long-range dependence decreases 
after the USD pegged or recovery period.  This may 
be caused by the heterogeneous participants’ 
reactions respected to their optimistic or pessimistic 
views of the future prospect to Malaysian stock 
market.  The estimated models are consistent with 
the trend of our global Hurst estimations in all the 
periods. 
 

Table 5: Serial correlation and ARCH effect Diagnostic 
Test Overall I II  III IV 

Q-(10) on ta~       

GARCH 14.91  5.62 5.13 9.77  14.15 
CGARCH 14.66 6.75 5.82 9.11 14.05 
FIGARCH 15.30* 8.08 5.60 8.50 13.35 

Q-(10) on 2
ta~  

     

GARCH 8.43 6.28 6.34) 1.68  7.46 
CGARCH 7.36 8.87 6.15 0.90 9.76 

FIGARCH 5.27 6.24 5.76 6.67 13.04 
LM ARCH test       
GARCH 0.74 0.67 0.65 0.15 0.79 
CGARCH 0.64 0.81 0.66 0.08 0.96 
FIGARCH 0.52 0.56 0.79 0.40 1.15 

Ljung Box Serial Correlation Test( Q-statistics) on ta~  and 2
ta~ : Null 

hypothesis – No serial correlation, LM ARCH test: Null hypothesis - No 
ARCH effect, * indicate significance at 10%. 
In Table 5, the diagnostic tests for the specifications 
in GARCH models indicate no significant serial 
correlations and ARCH effect in the mean and 
variance equations at the 5% level respectively 
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Table 6: BDS test  
 BDS Statistic on ta~  

Dimension Overall I II  III IV 
m=2      
GARCH 0.0042c 0.0046b -0.0041 0.0046 -0.0023 
CGARCH 0.0024 a 0.0023 0.0028 0.0024 -0.0036 
FIGARCH 0.0007 0.0003 0.0002 0.0034 0.000133 
m=5      
GARCH 0.0071b 0.0031 -0.0026 0.0113a -0.0047 
CGARCH 0.0026 -0.00001 0.0037 0.0093 -0.0066 

FIGARCH 0.0017 -0.0016 0.0052 0.0039 0.0039 
m=8      
GARCH 0.0045b 0.0011  0.0094a -0.0010 
CGARCH 0.0008 0.0002  0.0082 -0.0032 
FIGARCH 0.0016 -0.0017  0.0026 0.004367 
m=10      
GARCH 0.0023 0.0002  0.0067a -0.0005 
CGARCH -0.0003 0.0003  0.0061 -0.0021 
FIGARCH 0.0010 -0.0016  0.0009 0.0021 

a,b and c denote 10%, 5% and  1%   level of significance. BDS Statistic 
on ta~  : H0 : iid ta~ .  

 
The overall BDS tests are illustrated in Table 6.  In 
the BDS test for detecting non-linear dependences in 
the standardized residuals, we selected the values of 
the distance, ε, as 1.0 times the standard deviation; 
the embedding dimensions m are up to 5 for 
observations less than or equal to 500 and up to 10 
for sub-period exceed 500.  The acceptance of null 
hypothesis indicates the standardized residuals series 
are random with no non-linear dependences of any 
kind.  We start with the benchmark GARCH(1,1) 
models result where the BDS test statistics for pre-
crisis and USD pegged periods are statistically 
significant in several dimensions.  Thus, this 
concludes that the symmetry GARCH has been 
found to be inadequate in the model non-linearity 
specification in the pre-crisis and USD pegged 
periods.  On the other hand, the CGARCH and 
FIGARCH are not statistically significant at the 
level of 5% across all the period.  This implies that 
the chaos behavior of volatility ‘seems’ has been 
captured by the long-range dependence components 
embedded in the CGARCH and FIGARCH. 
However, the BDS test is suffer for low detection of 
asymmetry volatility behavior.  Therefore, the sign-
bias and negative test are implemented to ensure the 
possible neglected asymmetries in the standardized 
residuals in the BDS test. 
     In Table 7, the symmetry GARCH(1,1) model 
shows significant negative size-bias test statistics in 
overall, pre-crisis and post-crisis periods.  This 
result indicates that the GARCH model is not able to 
explain the large negative innovations impact in 
volatility.  The sign-bias test is only significant at 
level 10% in USD pegged period shows that the 
different impacts that positive and negative 
innovations have on volatility which are not 
predicted by the GARCH model.  On the other hand, 
the test for size and sign bias show significant 
negative size-bias in all the models for the overall 
period.  The large negative innovations impact is not 

sufficiently modelled even by the asymmetry and 
long memory FIAPARCH model.  From the 
estimation results of Table 7, the asymmetry 
volatility exists in the pre-crisis and USD pegged 
periods only.  Due to alternating presence of 
asymmetry volatility across the periods, 
implementing the FIAPARCH model to the overall 
data may cause the model mis-specification in 
accounting the asymmetry volatility.  On the other 
hand, after separating the overall data in 
phenomenon events such as crisis etc., the results 
show that the size and leverage effect are not 
statistically significant at level 1% in all sub-periods 
for CCGARCH and FIGARCH. 

 
Table 7: Sign and size bias test  

 Overall I II  III IV 
GARCH      
Sign-bias test -0.7643 -0.5796 -0.1724 -1.7041a 0.5965 
Negative size-bias test -4.3361c -2.3664b -0.7218 -0.6558 -2.0036b 
Joint test 7.0646c 2.2968a 0.2586 1.2034 1.5810 
CGARCH      
Sign-bias test -0.7551 -0.2192 -0.4056 -1.7005a 0.7394 
Negative size-bias test -4.4026c -1.8843a -1.0039 0.0509 -2.0290b 
Joint test 7.3058c 1.3099 0.4348 0.9675 1.7487 
FIGARCH      
Sign-bias test -0.4887 -0.4505 -0.4759 -0.0861 0.9940 
Negative size-bias test -2.6677c -1.4738 -0.8210 0.1095 -2.0734b 
Joint test 2.5672a 0.8199 0.3511 0.1169 1.8895 

The values represent the t-statistics. a, b and c denote 10%, 5% and  1%   
level of significance  
 
     As a result, in the fitted standard GARCH model, 
both or alternately, the BDS and sign/size tests 
strongly reject the iid hypothesis since the fitted 
GARCH model is mis-specified in that it does not 
include the asymmetries manifest and long-memory 
behaviours in the data for all the periods.  In 
contrast, the CGARCH and FIAPARCH show no 
evidence of unexplained non-linearity, sign or size 
bias in the negative side with the exception in the 
overall period. 
 
4   Conclusion 
This paper studies the asymmetry and long memory 
volatility in the Malaysian stock market by using  
the component GARCH model and fractionally 
integrated GARCH model.  Both the long memory 
GARCH models provide good description of the 
long memory behavior in the Malaysian stock 
market volatility compare to the standard GARCH 
model.  In addition, the presence of long memory 
volatility enables us to rank the degree of market 
inefficiency which also leads to the rejection of 
efficiency market hypothesis in Malaysian stock 
market.  The diagnostic tests indicate better 
specification in CGARCH and FIGARCH models 
with no significant of iid except in the overall 
period.  As a conclusion, the long memory GARCH 
provides a better framework for volatility modeling.  
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However, for long spanning data sets, the volatility 
modeling should take into account the market 
structures and important events(boom or recession) 
which may trigger the time varying asymmetry and 
long memory volatility. 
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