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Abstract: - In this paper we examine an age-structured partial differential equation compartmental 
model to predict minimal vaccination strategies to eliminate hepatitis A in Bulgaria. We describe the 
mathematical model and briefly summarise previous theoretical results. The basic reproduction 
number is a key parameter of the model. We consider proportional, assortative and symmetric mixing. 
Using pre-hepatitis A vaccination Bulgarian age-serological data we derive estimates for the basic 
reproduction number and minimum proportions of susceptibles to be vaccinated to eliminate hepatitis 
A in Bulgaria using single and double stage vaccination campaigns. 95 percentile confidence intervals 
are also given. 
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1    Introduction 
This paper is concerned with mathematical 
modelling of vaccination programs against 
hepatitis A using age-structured serological data 
for hepatitis A in Bulgaria.  A mathematical and 
statistical modelling method is used to evaluate 
minimum elimination vaccination proportions 
and bootstrap 95 percentile intervals for them 
using single stage and double stage vaccination 
campaigns. A similar method is used to examine 
rubella vaccination in the UK in [1]. More 
recently Farrington, Kanaan and Gay [2] review 
methods of estimation of R0 from age-structured 
serological survey data. 

Newborn children are born protected from 
hepatitis A by maternal antibodies but after this 
wears off they will be susceptible to hepatitis A. 
At some stage they catch the disease and after 
an infectious period they become permanently 
immune.  In developing countries adults are 
usually immune and epidemics of hepatitis A 
are uncommon. However improved sanitation in 
many parts of the world is leaving many young 
adults susceptible, and outbreaks are increasing. 
In developed countries, disease transmission is 
frequent in day-care centres enrolling diapered 

children, in household and sexual contacts of 
acute cases, intravenous drug abusers and 
travellers to countries where disease is endemic 
[3]. 

Hepatitis A is spread person to person by the 
faecal-oral route. The infectious agent is found 
in faeces, reaching peak levels the week or two 
before the onset of symptoms, and diminishing 
rapidly after liver dysfunction or symptoms 
appear, which is concurrent with the appearance 
of circulating antibodies to hepatitis A virus. 
Direct transmission occurs amongst male 
homosexuals. Common source outbreaks have 
been related to contaminated water and food 
contaminated by infected foodhandlers. 

 
 

2   Mathematical Model 
The basic mathematical model used is a 
compartmental partial differential equation 
model, originally due to Dietz and Schenzle [4]. 
x(a,t) denotes the density with respect to age of 
the number of susceptible individuals of time t. 
Thus the total number of susceptible individuals 
between ages A1 and A2 is 
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Similarly y(a,t,c) denotes the density with 
respect to age a and duration of infectiousness c 
of the number of infecteds at time t. Thus the 
total number of infected individuals between 
ages A1 and A2 and durations of infectiousness c1 
and c2 at time t is  
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The spread of the disease is described by the 
following partial differential equations: 
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where x(0,t) = ν, y(0,t,c) = 0, and y(a,t,0) = 
λ(a,t)x(a,t).  Here 
        
 φ(a) = per capita vaccination rate of 
susceptibles of age a; 
 
µ(a) = per capita death rate of individuals of age 
a; 
 
N = the total population size; 
 
ν = the total birth rate; 
 
γ(c) = the rate at which an infectious individual 
who has had the disease for time c becomes 
immune; 
 
and  
 

N
aaκb )',(

= total rate at which an infected 

individual of age a’ transmits the infection to a 
susceptible of age a.  
 

These equations are explained by Dietz and 
Schenzle [4]. Usually κb(a,a’)/N is given by a 
matrix {βij : i,j = 1,2, … n} on n age classes 
called the ‘who-acquires–infection–from-
whom’ (WAIFW) matrix. In this paper we 
examine proportional, assortative and 

symmetric mixing. Proportional mixing is when 
βij = bibj for some b1, b2, … bn. Assortative 
mixing is when individuals mix only with their 
own age group so βij = 0 for i ≠ j. Symmetric 
mixing is when βij = βji for i,j = 1,2, …,n. Due to 
lack of space we do not look at homogeneous 
mixing which is examined in [5]. 
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is the fraction of individuals surviving to age a. 
The model assumes a constant population size. 
If L is the maximum lifetime births must 
balance deaths so 

                     N = ν ∫
L
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λ(a,t) is the ‘force of infection’ suffered by 
individuals of age a at time t. This is given by 
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Here f(c) denotes the probability that an 
individual who has been infected for time c is 
still infectious. 

If φ(a) is an age-dependent vaccination 
campaign Rφ is the basic reproduction number 
when φ is used. This is the expected number of 
secondary cases caused by a single infected case 
entering a disease-free population at 
equilibrium. We expect that the vaccination 
campaign φ will eradicate hepatitis A if Rφ < 1 
but not if Rφ > 1. For an age-structured model 
Rφ is given as the spectral radius of an age-
structured matrix [6]. 

We use age-structured pre-hepatitis A 
vaccination serological data from 850 school-
children and blood donors in Bulgaria, collected 
by Professor G. Frösner, Munich and published 
by Keiding [7]. We use Keiding’s non-
parametric maximum likelihood method to 
estimate λ0(a), the age-dependent force of 
infection in the absence of vaccination. We 
smooth the estimate using the Epanechnikov 
kernel. The tail problems are handled as in [6] 
by using a truncated Epanechnikov kernel. 

A variable kernel smoothing bandwidth was 
used of 5 years up to age 15 years and 15 years 
at older ages. As a larger number of cases occur 
at younger ages and fewer cases occur at larger 
ages it is sensible to use a smaller bandwidth at 
smaller ages and a larger bandwidth at larger 

Proceedings of the 7th WSEAS International Conference on Mathematics & Computers in Biology & Chemistry, Cavtat, Croatia, June 13-15, 2006 (pp19-25)



 3

ages to ensure more even percentile confidence 
intervals. 

The matrix βij is then estimated using the 
equations (1)-(2) at equilibrium and mortality 
data for Bulgaria taken from [8]. For symmetric 
mixing this results in n2 equations in n 
unknowns. Assumptions are made about the 
form of the WAIFW matrix to reduce the 
number of unknowns to n. Sometimes these 
assumptions result in infeasible negative 
elements of the WAIFW matrix. If so we must 
go back and examine other possible 
assumptions on the matrix {βij} to find feasible 
ones. Then for a given mixing assumption and 
proposed vaccination campaign φ(a), Rφ is 
calculated using formulae given in [1] and [6]. 

For proportional mixing 
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the absence of vaccination and  
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For proportional mixing the results do not 
depend on the age class division used. 

For assortative or symmetric mixing Rφ is 
the spectral radius of the nxn matrix 
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Ii is the i’th age interval and if τ is the length of 
the infectious period,  
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D is the length of the infectious period weighted 
by the infectiousness f(c). 

For assortative and proportional mixing two 
age class divisions were used: 

 
(A)       0-5, 6-15, 16-35, and 36-87 years, 
 
representing pre-school children, 
schoolchildren, younger adults and older adults 
respectively, and 
 
(B)       0-15, 16-20, 21-35 and 36-87 years, 

 
representing children, older teenagers, young 
adults and older adults respectively. 
 

 
3   Method 
We can use this method to estimate statistics of 
interest. A critical elimination vaccination 
program is one which reduces Rφ to one. We are 
particularly interested in R0, the basic 
reproduction number in the absence of 
vaccination and pc, the minimum critical 
immunisation proportion of newborns necessary 
to be vaccinated to eliminate the disease. Single 
stage and double stage vaccination campaigns 
which target children at a given age and two 
given ages respectively are of special interest as 
these are often used in practice. We are 
interested in estimating pc(a), the proportion of 
children (or adults) who must be vaccinated, 
using a single stage vaccination program with 
vaccination at age a, in order to eradicate 
hepatitis A in Bulgaria and p1(A1) and p2(A2), 
the critical proportions of children (or adults) 
who must be vaccinated in order to eradicate 
hepatitis A in Bulgaria using a double stage 
vaccination program with vaccinations at ages 
A1 and A2. It is straightforward to use the 
bootstrap resampling method to estimate 
percentile confidence intervals for these 
quantities. Further details are given in [1] and 
[5]. 
 
 
4   Results 
For symmetric mixing we considered the 
following five symmetric mixing matrices: 
 

                    Matrix A 

               
⎟
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                     Matrix B 
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, 
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                    Matrix C 

               
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

4444

4331

4321

4111

ββββ
ββββ
ββββ
ββββ

,                                   

                    Matrix D 
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and              Matrix  E                                             
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Of these only configurations C and D gave 
feasible results and the results for C and D were 
very similar. Because of space limitations we 
present the results only for matrix configuration 
D. 
 

   
    Mixing 
Assumption 

   Age  
  Class  
Division 

 
  R0 

 
  95 P.C.I. 

     Prop.   5.00 (3.87,6.93) 
    Assort.     A  9.97 (7.08,16.93)
    Assort.     B  9.38 (6.16,16.99)
    Symm.     A  3.40 (1.77,10.65)
    Symm.     B   3.93 (2.80,6.73) 

 
Table 1. Estimates of R0 and associated 95 
P.C.I. for different mixing assumptions 
(proportional, assortative and symmetric) and 
age class divisions. 
 

Table 1 gives the values of R0 and associated 
95 percentile confidence interval (P.C.I.) for the 
different mixing assumptions used. For 
assortative and symmetric mixing the results 
depend upon the age class division used so two 
results are given, one for age class division A 
and one for age class division B. 

The values of pc, the minimum elimination 
vaccination proportions under different mixing 

assumptions, assuming vaccination at birth are 
given in Table 2. 

 
 

   
   Mixing 
Assumption

  Age  
 Class  
Division 

 
   pc 

 
  95 P.C.I. 

    Prop.   0.80   (0.74,0.86) 
   Assort.     A  0.90   (0.86,0.94) 
   Assort.     B  0.89   (0.84,0.94) 
    Symm.     A  0.70   (0.44,0.91) 
    Symm.     B  0.75   (0.65,0.85) 

 
Table 2. Estimates of pc and associated 95 P.C.I. 
for different mixing assumptions and age class 
divisions. 
 

A0, the maximum age of vaccination at which 
hepatitis A can be eliminated using a single 
stage vaccination campaign was also calculated 
under the different mixing assumptions, but this 
time the 95 P.C.I.’s were not calculated. The 
results are given in Table 3. 

 
 
    Mixing 
Assumption 

  Age  
 Class  
Division 

 
   A0 

     Prop.   14.01 
   Assort.      A    5.21 
   Assort.      B    5.71 
    Symm.      A  22.32 
    Symm.      B  19.28 

 
Table 3. Estimates of A0 for different mixing 
assumptions and age class divisions. 

 
The solid line in Fig. 1a shows the estimated 

minimum steady-state critical vaccination 
proportion pc(a) of susceptible individuals of 
age a who must be immunised to eliminate 
hepatitis A in Bulgaria under proportional 
mixing. Thus a steady state single stage 
vaccination strategy with vaccination of 
susceptibles of age a is used. The associated 95 
P.C.I. is also given (the dashed lines). Figs 1b 
and 1c show the corresponding minimum steady 
state critical vaccination proportions under 
assortative and symmetric mixing respectively. 

The solid line in Fig. 2a shows the estimated 
minimum steady state critical vaccination 
proportion p2 of susceptibles of age 52 =A  
years who must be successfully immunised 
together with a steady state proportion p1 of 
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susceptibles of age 21 =A  years to eliminate 
hepatitis A in Bulgaria under proportional 
mixing. Thus a steady state two stage 
vaccination strategy with vaccination of 
susceptibles at ages A1 and A2 is used. Again the 
dashed lines show the associated 95 P.C.I. Fig. 
2b and Fig. 2c are the corresponding figures for 
assortative and symmetric mixing. 
 
a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1a Estimated minimum elimination 
vaccination proportion (solid line) and 95 
P.C.I. (dashed lines) assuming vaccination of 
a proportion pc(a) of susceptibles of age a: 
proportional mixing. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Fig. 1b Estimated minimum elimination 
vaccination proportion (solid line) and 95 
P.C.I. (dashed lines) assuming vaccination of 
a proportion pc(a) of susceptibles of age a: 
assortative mixing. 
 
 
c) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1c Estimated minimum elimination 
vaccination proportion (solid line) and 95 P.C.I. 
(dashed lines) assuming vaccination of a 
proportion pc(a) at a fixed age a: symmetric 
mixing. 
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a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2a. Estimated minimum elimination 
vaccination proportion p2 at the age of A2 = 5 
years and 95 P.C.I. (dashed lines) when a 
proportion p1 of susceptibles were vaccinated 
at age A2 = 2 years: proportional mixing. 

 
b) 

 
 

 
 
 
 

 
 
 
 
 
 
 
 
 

 
Fig. 2b. Estimated minimum elimination 
vaccination proportion p2 at the age of A2 = 5 
years and 95 P.C.I. (dashed lines) when a 
proportion p1 of susceptibles were vaccinated at 
age A2 = 2 years: assortative mixing. 
 
 
 
 
 
 
 

c) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2c. Estimated minimum elimination 
vaccination proportion p2 at the age of A2 = 5 
years and 95 P.C.I. (dashed lines) when a 
proportion p1 of susceptibles were vaccinated at 
age A2 = 2 years: symmetric mixing. 
 

 
5 Summary and Conclusions  
In this paper we have used a mathematical 
method to examine minimum elimination 
vaccination strategies for hepatitis A in 
Bulgaria. 95 percentile confidence intervals 
were also given. Both R0 and the minimum 
elimination vaccination proportions were much 
higher for assortative than symmetric or 
proportional mixing, but assortative mixing has 
been shown to be always the worst mixing 
assumption [3]. Our most realistic estimate is 
perhaps symmetric mixing with age class 
division A, which gives R0 as 3.40 (95 P.C.I. 
1.77 to 10.65) and pc as 0.70 (95 P.C.I. 0.44 to 
0.91). 

 
This work was done whilst Nikolaos Sfikas 

was a Ph.D student at the University of 
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