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Abstract: - This paper presents a novel approach to decomposition of multichannel surface electromyograms 
recorded during low-level isometric muscle contractions. The approach is based on special time-frequency 
matrices of measured signals, enables separation of contributions of different motor units in time-frequency 
plane and is not sensitive to the superimpositions of motor unit action potentials. The results on both synthetic 
and real surface electromyograms prove the proposed approach is robust to noise and has potential clinical 
applications for the non-invasive analysis of single motor unit properties. 
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1   Introduction 

Pathological changes in human neuromuscular 
system are associated with rising health care use, 
disability, and financial costs. Only in EU approx. 
170 million working days is lost annually due to the 
health problems related to musculoskeletal 
disorders. Tools for objective and periodical 
assessment of motor function in humans are needed 
but are currently lacking.  

Human skeletal muscles comprise up to several 
hundreds of motor units (MU), i.e. small functional 
groups of muscle fibers. All fibers belonging to the 
same MU are innervated by the same motor neuron 
which transmits the control commands from the 
central nervous system in a form of innervation 
pulse trains. Each pulse in the innervation train 
triggers the so called motor unit action potential 
(MUAP), i.e. a measurable electrical potential, 
which travels from the innervation zone towards 
tendon regions causing the muscle fibers to contract. 
Usually, sufficiently large number of MUs contracts 
asynchronously to produce a random interference 
pattern, called electromyogram (EMG). Speaking 
about quantitative indicators of neuromuscular 
system condition, there is no real alternative to EMG 
[10]. 

Practically all clinical EMG investigations are 
based on the needle (inter-muscular) electrodes, 
whose invasive character prevents the long-term 
monitoring of the electromuscular parameters. More 
advanced EMG recording techniques, which detect 
the EMG signals on the skin surface above the 

investigated muscle, offer numerous advantages. 
Firstly, there is no risk to tissue damage what allows 
for unlimited repetition of tests in exactly the same 
place. Secondly, surface EMG (SEMG) electrodes 
eliminate the need for miniaturization and 
sterilizations and are, hence, inexpensive when 
compared to the needle electrodes. Thirdly, the 
SEMG signal detected on the skin surface includes 
information from a greater proportion of the muscle 
under investigation and is therefore more 
representative than conventional but very selective 
needle EMG.  

Despite its obvious potential, surface EMG is still 
rarely used in clinical settings. The main reason lies 
in a high complexity of SEMG signals and poor 
morphological information about the individual 
MUs. In the case of needle electrodes we can 
selectively observe the action potentials of only a 
few active MUs, or even of a single muscle fiber. In 
the SEMG case, on the other hand, we deal with 
several tens of concurrently active MUs. Moreover, 
the detected MUAPs vary in amplitude, duration and 
frequency and are further affected by the volume 
conductor separating MUs from detection system. 
Many attempts to enhance the information content 
of SEMG signals were made in the past, but 
quantitative analysis of single MUs remains very 
delicate process, even at low muscle contractions 
[10].  

This paper presents a novel approach to 
identification of MU discharge patterns. Described 
algorithm operates in time-frequency (TF) plane and 
is based on very efficient blind-source separation 
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(BSS) technique. The paper is organized as follows. 
Section 2 describes the assumed SEMG data model. 
The decomposition approach is presented in Section 
3, with the results form the experimental data 
reported in Section 4. We conclude the paper with 
the discussion in Section 5.    

2 Assumed SEMG data model 
SEMG recordings can be modelled as a multi-

channel linear, time-invariant system, as long as 
they have been taken in stable, controllable, and 
stationary measurement session. This implies an 
isometric muscle contraction and avoiding of the 
appearance of fatigue-induced changes. Dealing 
with sampled multi-channel EMG recordings, the 
discrete, shift-invariant multiple-input-multiple-
output (MIMO) modelling is most feasible. Each 
source (channel input) in such MIMO system is 
considered a MU innervation pulse train triggering 
the muscle fibers, while the system responses 
(channels) correspond to the MUAPs as captured by 
a spatial filter (pick-up electrodes):               
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with ( )jT r  denoting the  time instant in which the r-
th innervation pulse of j-th MU appeared.  

Convolutive relationship described in (1) can 
always be expressed in matrix form: 

)()( nn sHx =  (3)
where H stands for the so called mixing matrix 
of size M NL×  which contains the unit sample 
responses ( )ijh l : 
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with 
      (0), (1), (2), , ( 1)ij ij ij ij ijh h h h L = − h …  (5)

denoting the L×1  vector of (i,j)-th systems 
response. The extended vector of sources 

)(ns takes the following form: 

1 1( ) [ ( ),...., ( 1),...., ( ),...., ( 1)]TN Nn s n s n L s n s n L= − + − +s (6)

Vector of measurements ( )nx  can additionally be 
extended by K-1 delayed repetitions of each 
measurement:  

1 1 1( ) [ ( ), ( 1),...., ( 1),...., ( 1)]TMn x n x n x n K x n K= − − + − +x  (7)
When the influence of noise is considered we get:  

( ) ( ) ( )n n n= +y x ω  (8)
where ( )nω  denotes the extended version of the 
noise vector 1( ) [ ( ),...., ( )]T

Mn n nω ω=ω . 
 
3  Surface EMG Decomposition  
Recently, very efficient and robust approach to 
separation of instantaneous mixtures of 
nonstationary sources was introduced by A. 
Belouchrani and M. Amin [2]. Their method 
exploits the differences in energy locations of 
sources in TF domain and is based on the joint 
diagonalization [5,6] of so called spatial time-
frequency distribution (STFD) matrices: 
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which are, for all possible pairs of measurements 
constructed from the TF distributions of Cohen class 
[7]: 
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where ( , )m lΘ  and ),( lmφ  stand for the kernels 
that characterize the time-frequency distribution, 
respectively.  

Neglecting the noise and considering linearity of 
the assumed MIMO system we can write: 

( , ) ( , ) Tn f n f=xx ssD HD H  (11)
where, for every fixed index pair ( , )n f , ( , )n fssD  
denotes the STFD matrix of extended sources. 

In the sequel, the off-diagonal elements of 
( , )n fssD  matrices (cross-TF distributions) will be 

referred to as crossterms, while the diagonal 
elements of ( , )n fssD  will be called autoterms.  As 
a result, matrices ( , )n fssD  will be diagonal if and 
only if all their crossterms will be equal to zero [9].   

The blind separation approach introduced in [2] is 
based on assumption of more measurements than 
sources and comprises two steps. In the first step the 
extended vector of measurements (n)x  is spatially 
whitened by the matrix W, which satisfies 

      T T T= =x sWR W WHR H W I  (12)
where sR  stands for sample correlation matrix of 
extended sources and xR  for the correlation matrix 
of extended measurements. Denoting the matrix 
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square root of sR  by 
1
2  sR it is obvious from (12)

that 
1
2= sU WHR  is a unitary matrix. The W matrix 

can be constructed as a matrix square root of the 
inverse of the xR  matrix [1, 2].   

By multiplying the ( , )n fxxD  matrices by W Eq. 
(11) yields the whitened STFD matrices [2, 3]: 

1 1
2 2( , ) ( , ) ( , )T Tn f n f n f− −= =zz xx s ss sD WD W UR D R U  (13)

Dealing with the SEMG signals, the upper limit of 
the MU discharge rate, random jittering of discharge 
rate and refractory period of muscle fibers guarantee 
the extended sources are orthogonal. As a result, sR  
equals identity, and eliminates the unknown matrix 

1
2−

sR  in (13). Unknown unitary matrix U can now 
be estimated by joint diagonalization [4, 6]. 
However, to be able to do this we must first ensure 
the ( , )n fssD matrices, which enter the 
reconstruction of matrix U, are also diagonal. 

Generally speaking, the ( , )n fssD  matrices are, 
even in the case of SEMG signals, block diagonal. 
The reason is hidden in the kernel ),( lmφ  of TF 
distributions, which is used to average the sources in 
time and, hence, spreads the information around 
individual MU innervation pulses. Excluding the 
kernel ),( lmφ  from (10) we drive to so called 
Wigner-Ville TF distribution: 

      * 4( , ) ( ) ( )
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But Wigner-Ville spectra suffer from high 
sensitivity to the crossterms, which, again, make the 
source STFD matrices block diagonal. Namely, 
cross Wigner-Wille distribution of the i-th and j-th 
sources in an arbitrary time point nk is a summation 
of all the pulses from the i-th and j-th sources, which 
satisfy the following relation: 

1
, ,2 ( )k i p j qn n n= +  (15)

where , ( , )p q∈ −∞ ∞  and ,i pn  ( ,j qn ) denotes the 
time moment in which the p-th (q-th) pulse of the i-
th (j-th) source appeared. In other words, the cross 
TF distribution ( , )

i js s n fD  differs from zero in every 

time moment which lies exactly in the middle 
between the arbitrary pulses of the i-th and j-th 
source.   

 We can reduce the number of pulses contributing 
to ( , )

i js s n fD  by shrinking the calculation of the 

Wigner-Wille spectra in (14) to the finite interval    
[-a,a]:   

* 4( , ) ( ) ( )
i j

a f l
x x i j

l a
n f x n l x n e π− ⋅ ⋅

=−
= +∑D  (16)

where a denotes positive integer number. Setting the 
limit a to zero, all the crossterms are left out and the 

( , )n fssD  matrices begin to show their diagonal 
structure.  The TF distribution in (14) now yields: 

*( , ) ( ) ( )
i jx x i jn f x n x n=D  (17)

Having ensured the diagonality of the ( , )n fssD  
matrices, we can use the joint diagonalization of 
several ( , )n fssD  matrices to reconstruct the 
missing unitary matrix U. Knowing the matrices W 
and U, the mixing matrix H can be estimated as 

#=H W U  (18)
where # denotes Moore-Penrose pseudoinverse. 
The sources can be reconstructed as:  

( ) ( )Hn n=s U Wx . (19)
 
3.1 Decomposition of close-to-orthogonal 

sources 
In the previous section we supposed the sources are 
strictly orthogonal. This implies several restrictions 
that are hard to meet in reality. Processing the EMG 
signals, for example, the innervation pulse trains will 
be independent only at very low levels of muscle 
contractions. When the contraction level increases 
the innervation trains become more and more 
correlated (up to 10 %) and their pulses begin to 
overlap.  

Let 
0 0 01, ,{ ,...., }n n p nG j j=  denote a set of indices of 

sources which all trigger in a given time moment n0. 
0( , )n fssD  matrix will be far from diagonal as it will 

have 2p  elements different from zero (all autoterms 
and all crossterms at the positions that are contained 
in 

0nG ). Using the eigendecomposition 

0( , ) Tn f Λ Λ=ssD U ΛU  we can write 

0( , ) T Tn f Λ Λ=zzD UU ΛU U  (20)
Hence, the diagonalization of 0( , )n fzzD  produces 
the wrong unitary matrix ΛUU .  

There is yet another condition that has to be met. 
To guarantee the uniqueness of the reconstructed 
unitary matrix U, the set of STFD matrices entering 
the joint diagonalization must contain the 
contributions of all extended sources [5, 9]. But, to 
guarantee their diagonality in the column-space of 
matrix U, each individual STFD matrix must contain 
the contribution of a single source only. This implies 
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that we must diagonalize at least ( 1)N L K+ −  
STFD matrices ( , )n fzzD  (one for each source).  

In other words, to guarantee the reconstruction of 
original mixing matrix we must be able not only to 
distinguish between the diagonal and nondiagonal 

( , )n fssD  matrices, but also to distinguish between 
the matrices with contributions of different extended 
sources. With unitary matrix U unknown we can 
only rely on the information contained in the 

( , )n fzzD  matrices. 
Let ( , )i n fssD  denote the diagonal STFD matrix of 

sources with a single nonzero autoterm dii  at the i-th 
diagonal position (i.e. with contribution from the i-th 
extended source). Bearing in mind that U is unitary 
we can derive the following relation:  
 0),(),(),(),( == Tjiji fnfnfnfn UDUDDD sssszzzz  (21)
Now, denote by ( , )ij n fssD  the STFD matrix of 
sources with contributions of both the i-th and j-th 
extended sources. ( , )ij n fssD  will have four nonzero 
elements dii, dij, dji and djj at the positions (i,i), (i,j),   
(j,i) and (j,j), respectively. Short algebraic 
manipulation shows: 
      ( , ), ( , )ij i

iin f n f d=zz zzD D  (22)

where scalar product .  is defined as: 

      1 2
1 2

2

( ),
( )

trace
trace

=
M MM M

M
 (23)

and trace(M) denotes the sum of diagonal elements 
of matrix M (the matrix trace). 

According to (21) and (23) the STFD matrices of 
whitened measurements with a contribution from a 
single source form the orthogonal basis of 

( 1)N L K+ − -dimensional space. The quest for 
( , )i n fzzD  matrices with contributions from single, 

but different sources has now reduced to much easier 
problem of finding the orthogonal basis of the 

)1( −+ KLN -dimensional space. This is a very 
important result as the criterion function (23) 
enables us to control the ( , )n fzzD  matrices entering 
the joint diagonalization, and, consequently, 
guarantees the uniqueness of matrix U. We must still 
ensure the set of the ( , )n fzzD  matrices entering the 
joint diagonalization contains the matrices with 
contributions from all the sources.  
 
3.2 Influence of Noise 

By minimizing the interval [a,a] on which the 
Wigner-Ville distribution is calculated we annulled 
the time averaging of measurements and, hence, 

reduced the robustness against noise [5]. The time 
averaging can be partially replaced by averaging of 
the ( , )n fzzD  matrices with contributions from a 
single (not necessarily the same) source: 

  1 1

1

1 1( , ) ( , )

1 ( ) ( )

T Ti i T
j j

j j

T T T

j

n f n f
T T

n n
T

= =

=

   =∑ ∑    

+ ∑

zz ssD U D U
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Assuming noise ( )nω  Gaussian, white and zero-
mean the noise influence in (24) can be expressed 
as: 

      2

1

1lim ( ) ( )
T T T T

T n
n n

T
σ

→∞ =
=∑ Wω ω W WW  (25)

The noise variance 2σ  can be estimated from the 
correlation matrix xR , while the whitening matrix 
W is known. This allows us to simply subtract the 
noise influence in (24). 

The influence of noise can further be reduced 
by averaging the reconstructed sources ( )ns . 
Namely, presented decomposition approach  
reconstructs (L+K-1) delayed repetitions of each 
source, which can be aligned in time and 
averaged afterwards. 

4 SEMG decomposition results 
The presented decomposition approach was tested 

on synthetic and real SEMG signals. As already 
explained in the Section 2, the MU can be treated as 
a pulse sources, while the innervation trains of 
different MUs do not overlap significantly (at least 
at low muscle contraction levels). On the other hand, 
the assumption of the stationary mixing matrix 
imposes the surface EMG measurements must be 
taken in steady, controlled isometric conditions.   

4.1 Results on synthetic SEMG signals 
The proposed decomposition procedure was first 

tested on synthetic SEMG signals, generated using 
the advanced surface EMG simulator [8]. The 
volume conductor was described as an anisotropic 
layered medium with muscle, fat and skin layers. 
Active MUs consisted of a random number of fibers 
(uniformly distributed between 50 and 300) with the 
circular MU territories of 20 fibres/mm2. Detection 
system with 11 rows and 5 columns of electrodes 
was centred over the distal half of muscle fibers, 
simulating 50 single-differential measurements of 
surface EMG. The number of active MUs was set to 
5 and 10, respectively, while SNR ranged from 10 
dB to 20 dB, in steps of 5 dB. 10 simulations were 
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performed for each number of active MUs. In each 
of the simulation runs the depth of the active MUs, 
their discharge rate, number of fibers, shift in the 
direction transversal to the muscle fibers, and 
conduction velocity were randomly selected. Signals 
from each simulation run were corrupted by additive 
noise (5 realizations of noise for each SNR). 

The described decomposition method assumes the 
number of sources is known. Note however, the 
number of sources can be overestimated. As a result, 
the method reconstructs some extra sources, but they 
all have amplitude close to zero. Nevertheless, 
testing the method on the synthetic signals, we 
supposed the number of sources was known. The 
vector of measurements was extended by factor K=3 
in the case of 5 active MUs, and by factor K =7 in 
the case of 10 active MUs, resulting in 135 and 310 
extended sources, respectively. The measurements 
were first whitened and STFD matrices were 
calculated. Afterwards, the criterion (23) was used to 
select candidates for joint diagonalization (in order 
to reduce the influence of noise, up to 20 different 
STFD matrices were summed together, as described 
in (24)). Finally, the reconstructed repetitions of the 
same source were aligned in time and averaged. The 
results are summarized in Table 1 and Figs. 1 and 2. 
 
4.2 Results on real SEMG signals 

The real experiments were conducted with signals 
from the dominant biceps brachii of nine healthy 
male subjects (age 26.8 ± 2.2 years, height 179 ± 7 
cm and weight of 72.1 ± 8.3 kg). All subjects gave 
their informed consent. The signals were detected by 
an array of 13×5 electrodes (size of 1×1 mm and 
inter-electrode distance of 5 mm), amplified (gain 
set to 10000) by a 64-channel EMG amplifier 
(LISiN; Prima Biomedical & Sport, Treviso, Italy), 
band-pass filtered (-3 dB bandwidth, 10 Hz – 500 
Hz), and sampled at 2500 Hz by 12-bit A/D 
converter. The signals were recorded during the 30 s 
long isometric voluntary muscle contractions 
sustained at constant level of 5% and 10% of 
maximum voluntary contraction (MVC), 
respectively. The contraction force was measured by 
the torque sensor and displayed on the oscilloscope 
to provide the visual feedback to the subjects. The 
noise and movement artefacts were visually 
controlled and reduced by applying water to the 
skin surface. 

Following the protocol in the first experiment, we 
first supposed the number of active MUs limited to 7 
in the case of 5% MVC, and to 10 in the case of 
10% MVC. Consequently, the measurements were 
extended by the factor K=10 at 5 % MVC, and K=15 

at 10 % MVC. The results of the decomposition are 
summarized in Table 2 and Figs. 3 and 4.  

Table 1. The number of reconstructed MU (mean ± 
standard deviation), the percentage of accurately 
reconstructed pulses (true positive statistics) and the 
percentage of misplaced pulses (false positive 
statistics).    

No. of 
MUs

SNR
[dB]

No. of 
reconst. 

MU 

True 
Positive 

[%] 

False 
Positive 

[%] 
20 3.8 ± 0.9 90.0 ± 12.0  5.9 ± 6.0 
15 3.3 ± 1.3 81.6 ± 14.6  7.5 ± 7.0  

5 

10 2.8 ± 0.9 77.3 ± 16.0 12.7 ± 8.7  
20 7.3 ± 1.1 89.0 ± 14.7 5.0 ± 8.7 
15 6.1 ± 0.8 83.9 ± 14.2  5.9 ± 8.9  

10 

10 4.7 ± 1.0 76.7 ± 14.5  9.4 ± 11.0  

0.5 1  1.5 2  2.5 3  3.5 4  
10

15

20

SN
R

 [d
B]

Time [s]  
Fig. 1: Original synthetic innervation pulse trains 
(black) and reconstructed pulse trains (grey) in the 
case of 5 active MUs.  

0.5 1  1.5 2  2.5 3  3.5 4  
10

15

20

SN
R

 [d
B]

Time [s]  
Fig. 2: Original synthetic innervation pulse trains 
(black) and reconstructed pulse trains (grey) in the 
case of 10 active MUs.  

4   Conclusion 
The results in Table 1 show the efficiency of 

presented decomposition approach decreases with 
the SNR and the number of active MUs. At SNR of 
20 dB, the average number of the reconstructed 
MUs yields 3.8 and 7.3 in the case of 5 and 10 MUs, 
respectively. Decreasing SNR to 10 dB the average 
number of MUs drops to 2.8 and 4.7.  

The fact that the performance drops with the 
number of active MUs should not come as a 
surprise. At a high SNR, the criterion ensures that 
only the STFD matrices comprising the contribution 
from a single source enter the joint-diagonalization. 
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Low SNR and large number of active MUs, on the 
other hand, degrade the selection of STFD matrices 
and the negative impact of crossterms in STFD 
matrices increases.   

Table 2. The number of reconstructed MUs and 
their average instantaneous firing rate. Surface 
SEMG signals were recorded during the isometric 
contractions of the dominant biceps brachii of nine 
healthy male subjects. 

MVC 
[%] 

Number of 
reconstructed MU 

Average firing rate 
(pulses per second) 

5 2.6 ± 0.7 13.2 ± 1.4  
10 3.0 ± 1.0 14.0 ± 1.9 

a)
b)

c)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

d)

Time [s]  
Fig. 3: Reconstructed MU innervation pulse trains in 
the case of 5 % MVC contraction of biceps brachii: 
a) subject 1, MU 1 b) subject 1, MU 2, c) subject 2, 
MU 1, d) subject 2, MU 2.  

a)
b)

c)
d)

e)

0.2 0.4 0.6 0.8 1  1.2 1.4 1.6 1.8 2  
Time [s]

f)

 
Fig. 4: Reconstructed MU innervation pulse trains in 
the case of 10 % MVC contraction of biceps brachii: 
a) subject 1, MU 3 b) subject 6, MU 1, c) subject 6, 
MU 3, d) subject 6, MU 4, f) subject 8, MU 3. 

Evaluating the results on the real surface EMG the 
original MU firing patterns and the reference MUAP 
shapes are unknown. However, encouraged by the 
results on the synthetic signals, we can rely on less 
strict measures, such as calculated instantaneous 
discharge rate and regularity of reconstructed inter-
pulse intervals. Finally, MUAPs as detected by the 
electrodes can be extracted by spike triggered 
averaging (using the identified discharge instants as 
triggers) and taken into account. In the case of 5 % 

MVC real measurements a total of 23 MUs were 
identified. When decomposing the 10 % MVC 
measurements, the total number of identified MUs 
reached 27. In both cases the average MU firing rate 
was within expected physiological limits (from 8 to 
15 pulses per second). The extracted MUAPs 
exhibited stable shape over time revealing location 
of MU innervation zones, length of the fibers, and 
propagation in the fiber direction. 

The proposed TF-based method can extract MU 
discharge patterns in low-level isometric conditions, 
is not sensitive to MUAP superimpositions and has 
potential clinical applications for the non-invasive 
analysis of single MU properties. 
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