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Abstract: -This work analyzes the internal behavior of particle swarm optimization (PSO) algorithm when the 
complexity of the problem increased. The impact of number of dimensions for three well-known benchmark 
functions, DeJong, Rosenbrock and Rastrigin, were tested using PSO. A   Problem-Specific Distance Function 
(PSDF) was defined to evaluate the fitness of individual solutions and test the diversity in neighboring 
individuals. The PSDF started with a large value, but converged to the optimum in few generations, irrespective 
of complexity of problem or objective benchmark function. The simulation illustrates that all parameters in any 
dimension behave in similar pattern and we can expect similar behavior for additional complexity in the 
problem. 
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1. Introduction 
The ability of Particle Swarm Optimization (PSO) 
algorithms, to find near optimal solutions to an 
optimization problem has been widely 
demonstrated [1]. However, one of the major concerns 
in applying these methods is the behavior of this 
algorithm when the number of variables or the 
dimension of the problem is increased. The numbers 
of unknowns have a significant impact on the 
algorithm’s behavior, and therefore greatly affect the 
quality of the final solution found, as well as the time 
taken to find that solution  [2]  [3]. These results 
demonstrate that by understanding the behavior of the 
algorithm when using few unknowns, and the 
relationships between them, the computation required 
can be reduced significantly  [4]. The objective of this 
paper is to demonstrate the effectiveness of the 
behavior analysis of PSO algorithm by varying 
complexity of problem-domain. 

We observe that as the complexity of problem 
increases, there is not much change in the way an 
individual solution behaves. We tested and justified 
the behavior by comparing the computational 
performance of the PSO using a set of three 
mathematical benchmark objective functions namely, 
DeJong F1, Rosenbrock and Rastrigin  [5]. We tried to 
analyze the behavior of individual elements and 
formulate a relation between consecutive increments 

in the number of  unknowns from 2 to 6. Also we 
analyzed each dimension and observed the behavior 
of individuals in a particular dimension by varying 
the problem complexity.  

We have used the distance function to evaluate 
the individuals according to their position from the 
best individual so far.  The distance function (DF) is 
usually a measure of how far two solutions are from 
each other  [6]. We have classified the distance 
functions into two groups: an algorithmic distance 
function ADF and a problem-specific distance 
function PSDF. In this paper, we use the PSDF. 

This paper is organized in 5 sections. Section 2 
describes the Particle Swarm Optimization Algorithm 
and defines the Distance Functions. In Section 3, the 
benchmark objective functions are discussed. Section 
4 and 5 are a detailed explanation of our experiment 
and it includes PSDF value analysis for three 
benchmark functions uder study. In Section 6, we 
conclude our observations. 

 
 

2. Particle Swarm Optimization and 
Distance Functions 
 
 

2.1 PSO 
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Evolutionary Computational Algorithms (ECA) are 
gaining popularity especially when difficult 
optimization problems are studied in depth  [7]. It 
complements the study of traditional computational 
systems  [8]. There are several types of ECAs in use 
today. The four traditional algorithms are: the Genetic 
Algorithm (GA), Evolutionary Programming (EP), 
Evolution Strategies (ES), and Genetic Programming 
(GP). More recently, new ECAs have arisen, such as 
Particle Swarm Optimization (PSO), Ant Colony 
(ACO), and the Shuffled Frog Leaping Algorithm 
(SFLA). 

     The PSO is a population based stochastic 
searching technique, which was developed by 
Kennedy and Eberhart in 1995. It is one of the most 
popular methods for optimization of continuous 
nonlinear functions. One of the important merits of 
PSO Algorithms is their ability to tackle real-world 
problems, which are very hard or even unsolvable by 
traditional optimization techniques. According to  [9], 
PSO is a biological motivated optimization paradigm 
which involves “social” interaction between 
individuals of a population.These individuals, also 
called particles, can move through a multidimensional 
search-space in order to find an optimum. Particles 
can change their movement directions and velocities 
according to the information which they themselves 
and the whole swarm have gathered so far from the 
fitness landscape. Each particle remembers its own 
best position it has encountered by then while all 
particles know about the overall best position which 
has been found by all particles of the swarm. From 
this information and each particle's current velocity 
vector new velocity vectors are calculated and the 
positions of the particles are updated. Different 
parameter settings can influence the behavior of the 
swarm, for example its ability to converge. PSO has 
been inspired by the social behavior of flock of birds 
or school of fishes. It uses population of individuals, 
where they are trying to reach the best solution  [10].  

In each generation, the swarm is flying with a 
certain velocity, which is used to change their 
positions.  The changing of the position not only 
depends on the velocity but also on the current 
position of the particle itself in that instance and to 
the best individual’s position so far. There is only one 
piece of food in the area being searched.  All the birds 
don’t know where the food is; however, the birds 
know how far the food is in each generation.  
Therefore, the effective strategy to find the food is to 
follow the bird that is the nearest to the food. 

In PSO, each single solution is a bird in the 
search space and it is called a particle.  All of 

particles have fitness and velocity values.  The fitness 
value is evaluated by the fitness function to be 
optimized; moreover, the velocity value directs the 
flying of the particle through the problem space by 
following the current best particle.  A modified 
version of PSO with inertia weights was introduced 
by Shi and Eberhart  [4], as depicted in Figure 1. 

Particle Swarm Optimization: 
1 begin 
2 t =0; 
3 initialize particles P (t); 
4 evaluate particles P (t); 
5 while (termination conditions are unsatisfied) 
6 begin 
7  t = t + 1; 
8  update weights 
9  select pBest for each particle 
10  select gBest from P (t-1); 
11  calculate particle velocity P (t); 
12  update particle position P (t); 
13  evaluate particles P (t); 
14 end 
15 end 

Fig 1: The basic structure of particle swarm 
optimization.  

PSO algorithm executes two Equations 1-2 for 
updating the velocity and position of every particle in 
the population. 
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In the equation 1 and equation 2, V[i] and 
present[i] represent the velocity and position of ith 
particle respectively.  The pBest[i] represents the 
present best for the ith particle and gBest[i] represents 
the global best among the population so far. The 
function rand () generates random number uniformly. 
w is the inertia weight C1 and C2 are constants 
assigned value 2 most of the time. 

 
 

2.2 Distance Functions 
The distance functions (DF) are a set of 
measurements, which should be collected at each 
generation, to point out the internal behavior 
(similarity and difference) between the current 
optimal-solution to the rest of the population 
 [11] [12].  Such information can help us in 

Proceedings of the 7th WSEAS International Conference on Evolutionary Computing, Cavtat, Croatia, June 12-14, 2006 (pp45-52)



 
 

 

understanding of the convergence process within 
PSO, and guide us on how to better use such 
algorithms. Also using the distance function we can 
evaluate and test the effect of increase in the 
complexity of problem and test the behavior of PSO 
algorithm  [13]. We have classified the distance 
functions into two groups: an algorithmic DF and a 
problem-specific DF. 

1) Algorithmic Distance Functions: The algorithmic 
distance functions (ADF) are a set of measurements 
that are directly associated with the evolutionary 
approaches, such as the convergence rate, executing 
time, and memory allocation.  In this paper, we are 
more interested in the problem-specific distance 
function.   

 
2) Problem-Specific Distance Functions: The 
problem-specific distance functions (PSDF) are a set 
of measurements that are directly associated with the 
problems to be solved by an evolutionary approach.  
Therefore, a set of PSDF may not be used to evaluate 
another problem. 

The PSDF defined for our research is X-Diff (read 
as delta X t), which indicates the root of the sum of 
the mean square difference between the variable X of 
the ith individual within the t generation to its best X 
variable within the same t generation, as stated in 
Equation 3.The term PS represents the population 
size. 
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Equation 3 states the difference per individual; 
however, a good PSDF should give an insight 
behavior of the entire population.  The data collected 
from Equations 6 give us first-order information on 
how PSO perform at each generation, and how both 
algorithms are drifting toward the best/optimum  [14]. 
 
 
3. Benchmark Functions  
A set of benchmark test functions is selected with the 
goal of representing fitness landscapes ranging from 
functions in which a global optimum can be found 
easily using constriction for particle velocity control, 
to the functions in which it is difficult to find the 
global optimum. We have used three benchmark 
optimization functions, which are DeJong F1, 
Rosenbrock and Rastrigin. Each function has a 
number of instances depending on the number of 
unknowns or dimension, i. Here we have 

experimented with five instances for i ranging from 2 
to 6 per function. 

The implementations are scalable, i.e., the 
dimensions of the functions are adjustable via a single 
parameter used in the function. The following 
functions have been used for evaluation. 

 
 

3.1 De Jong’s F1 function (Circle Function)  
This function is known as circle function when i = 2 
and sphere function in case of i =3. It is continuous, 
convex and unimodal. 

( )
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Global minimum: x = 0;   f  = 0 
 
 
3.2 Rosenbrock’s Valley (Banana function) 
Rosenbrock’s valley is a classic optimization problem 
and it is notorious for its slow convergence to the 
optimum value. The global optimum is inside a long, 
narrow, parabolic shaped valley. To find the valley is 
trivial, however convergence to the global optimum is 
difficult. Hence this problem is often used in 
assessing the performance of the optimization 
algorithms. It is a unimodal function and has single 
local maximum or minimum. 
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3.3 Rastrigin Function 
This function is a typical example of nonlinear 
multimodal function that may have local as well as 
global optima. It is fairly complex due its complicated 
search space and large number of local minima. 
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4. Experimental Setting  
We have implemented the basic structure of particle 
swarm optimization algorithm (as depicted in Figure 
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1) using C language. The DeJong F1, Rosenbrock and 
Rastrigin functions are used as our examples (as 
shown in Equations 4, 5, and 6) with 50 individuals 
in a population and 300 generations for all three 
functions. The range of each unknown is as shown 
earlier in equations 4, 5, and 6. The maximum 
velocity was set always equal to the maximum 
positive range for each problem. C1 and C2 were set to 
2. The number of unknowns is increased from 2 up to 
6 unknowns for each problem. 

 
5. Results 
 
 
5.1 PSDF Analysis – DeJong F1 Function  
We start with minimum number of unknowns i.e. 2 
unknowns for DeJong F1 function which is a circle 
function. Gradually we increment the dimension to 
observe the behavior pattern. Figures 2, 3, 4, and 5 
display the results obtained for DeJong F1 function 
for 300 generations, from 2 to 6 dimensions.  

As observed from the PSDF values in Figure 2, the 
individuals' performance is similar for the second 
unknown in all variations obtained by altering the 
total number of unknowns. Notice that all individuals 
start with large diversity but there is huge drop in 
diversity after say 75 generations and graph is steady 
plateau. 

Considering the second dimension as seen from 
Figure 3, we plot the values of the second unknown 
when there are 2, 4, and 6 unknowns respectively. In 
case of 2 unknowns, the PSDF value of the second 
unknown is 1.54 in the beginning and after 100 
generations it becomes 0.01. When number of 
unknowns is 4, the value for the second unknown 
starts with 1.38 and comes to lower than 0.05 within 
in 100 generations. The individuals behave in similar 
manner when number of unknowns is 6. The PSDF 
value for the second unknown was initially 1.02 then 
it became 0.08 in 100 generations. 

When we analyze the graphs for third and fourth 
dimensions in Figures 4 and 5 respectively, the 
behavior pattern for PSDF values shows similar 
curves as it was observed for first and second 
dimensions respectively. Thus the PSDF values show 
that the diversity in individuals is high in the 
beginning of searching then it gradually reduces, 
which indicates less diversity. 

Figure 6 shows the behavior of three unknowns 
from three different dimensions, namely, 1, 5, and 6. 
From this figure, we notice that the three unknowns 
behave in the same way. They all start with unstable 

and diverse action, and after few generations, all of 
the unknowns become more stable and less diverse.  
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Fig 3 Mean X2 for DeJong F1 Function.  
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5.2 PSDF Analysis – Rosenbrock Function 
In the Rosenbrock function, we start with similar 
setup. We have generated the PSDF values for second 
dimension and then increasing the complexity of 
problem, we move to further dimensions. Figures 7, 
8, 9, and 11 plots the PSDF values for Rosenbrock 
function where the numbers of unknowns range from 
2 to 6. From these figures, we find that the behavior 
pattern of individual solutions is in a particular 
pattern.  

From Figure 7, we observed that for first 
dimension, when number of unknowns is 2, the PSDF 
value was 1.29 and gradually the diversity between 
individual solutions reduced and became 0.06 in 100 
generations. Also the initial values were respectively 
0.67 and 1.06 for 4 and 6 number of unknowns which 
became 0.14 and 0.13 respectively in 100 
generations. Thus the PSO algorithm gains stability in 

100 generations for first dimension of Rosenbrock 
function. 

As demonstrated in Figure 8, the values are plotted 
for second dimension for Rosenbrock function, when 
number of unknowns is incremented from 2 to 6. In 
case of 2 unknowns, the value started with 1.54 and 
came down to 0.11 in just 100 generations. Similarly, 
initial values for 4 unknowns and 6 unknowns were 
1.47 and 1.01 respectively, which decayed to 0.13 
and 0.11 respectively, in 100 generations. 

As observed from Figures 9 and 10, in case of 
third and fourth dimensions, it is showing reduction 
in deviation between individual values and stability 
after 100 generations. For third dimension the initial 
values were 1.49 and 1.35 respectively for 4 and 6 
unknowns which after 100 generations became 0.11 
and 0.12 respectively. However for the fourth 
dimension, the PSO algorithm generates the values 
0.81 for 4 unknowns and 0.87 for 6 unknowns in the 
beginning. After 100 generations, fourth dimension 
values become 0.29 and 0.37 for 4 and 6 number of 
unknowns, thus gaining stability in fewer 
generations. 

Thus, the deviation in individual positions is more 
initially, but more or less PSDF has same value for 
number of unknowns equal to 3, 4, 5 or 6, and this 
deviation drops to approximately 0 which is optimum 
value in less than just 150 generations. Thus 
irrespective of the number of unknowns for the given 
problem the plot is same. 

In figure 11, observation of the behavior pattern 
of PSO algorithm when applied to Rosenbrock is 
shown. We plot the graph for 5th and 6th dimensions, 
and analyze it. From the analysis, it is observed that 
the individuals gradually converge with reduction in 
diversity in both dimensions.  
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Mean X2 for 2 to 6 Unknowns
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5.3PSDF Analysis – Rastrigin Function 
We started with first dimension and consequently 
analyzed second, third and fourth dimensions, in case 
of Rastrigin function.  

Figures 12, 13, 14 and 15 are plot of PSDF 
values for parameters ranging from 2 to 6 unknowns 
for the benchmark function of Rastrigin. As observed, 
though the initial value is large for all the three cases, 
the optimum value is almost reached in less than 100 
generations, irrespective of variation in number of 
unknowns. The PSO algorithm gains stability soon in 
approximately 100 generations as was the similar 
case with DeJong F1 function and Rosenbrock 
function. 

As observed from Figure 12, within only 100 
generations, the values converge, even though they 
started at values as high as 1.35, 2.47 and 1.01 for 2, 
4, and 6 unknowns respectively. The diversity in 
individual vales reduces drastically and come down 
to 0.16, 0.26 and 0.31 in 100 generations.  

Figure 13 shows the second dimension values 
for 2, 4, and 6 unknowns. The graph starts with 
values 1.12, 2.47, and 0.99 for 2, 4, and 6 unknowns 
respectively. After 100 generations, the same values 
for 2, 4, and 6 generations are 0.13, 0.30, and 0.32 
respectively. 

From Figure 14, we get the values for third 
dimension, which are 1.31 and 0.87 respectively for 4 
and 6 unknowns initially. The values decay to 0.26 
and 0.36 for 4 and unknowns respectively in 100 
generations. 

As observed from Figure 15, after 100 
generations, the values for fourth dimension for 4 
unknowns is 0.29 which was initially 0.81, and for 6 
unknowns it is 0.37 which was initially 0.86. Thus 
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the graph is steady plateau and individuals are not 
deviated at all after few generations. 
        Figure 16 also justifies our observation that 
when values are graphed for Rastrigin function, 
with as much complexity as in 6th dimension, the 
values for first, fifth and sixth dimensions are 
plotted and it is showing a constant decay and 
finally forms a plateau in less than 100 generations 
where diversity is less. 
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Fig 12 Mean X1 for Rastrigin Function. 
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Fig 13 Mean X2 for Rastrigin Function.  
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Fig 14 Mean X3 for Rastrigin Function  
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6. conclusion 
This work analyzes internal behavior of the PSO 
algorithm, with respective increment in the number of 
unknowns which means the complexity of problem-
domain, using the values of Problem Specific 
Distance Function (PSDF) for the three well-known 
mathematical benchmark functions, such as DeJong 
F1, Rastrigin and Rosenbrock.  The criterion for 
analysis was variation in the number of unknowns for 
these benchmark functions from 2 unknowns to 6 
unknowns. We observed that individuals behave in 
similar manner irrespective of the complexity of the 
problem. The mean distance function started with a 
large value, but it converged to optimum in few 
generations. That means, once we know the results 
for 2 or more number of unknowns, we can predict 
the expected behavior for incremental number of 
unknowns. We have justified the behavior using all 
the three objective benchmark problems under study.  
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The parameters Vmax and the range of variables 
of PSO are fixed during the entire experiment. Thus 
increasing the complexity of a problem, and with the 
fixed settings for PSO parameters, the algorithm 
behaves in similar manner which means that PSO 
algorithm is stable. In addition, the result was that the 
algorithm always start with big collection of 
individuals and bring all the individuals together near 
the optimum value, thus becoming less diverse. This 
was true for all the dimensions, which means that no 
matter how complex the problem becomes, PSO 
behaves the same. As a conclusion, if we have  very 
complex problem with many unknowns, testing it for 
few unknowns will give us enough prediction 
whether PSO is able to solve this problem or not. 
Thus we can use PSDF as a measure whether PSO 
can solve the problem in hand or not. This will be 
done by applying the PSDF analysis to less complex 
problem and observe the behavior of PSO to it. If 
PSO was able to converge to the optimum, then we 
can directly use it for more complex cases.  

 From this experiment, we can observe that PSO 
has a convergence rate which is quite high, the 
stability is achieved in fewer generations, and the 
diversity of individuals reduces significantly. In 
addition, PSDF values helped in predicting whether 
PSO will be able to solve more complex cases or not.  
In future work, we will try to find the actual values of 
unknowns in more complex dimension using PSO, if 
we have the values of unknowns in less complex 
problem. 
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