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Abstract: - Nutrition is one of many disciplines, where intractable optimization problems naturally arise and require 
special attention of meta-heuristic methods. The problem of generating an optimal dietary menu that considers nutrient 
and non-nutrient requirements can be solved by evolutionary algorithms in an efficient and effective way. The menu 
optimality may be defined by several factors, such as cost, food functionality and season, as well as aesthetic standards 
for taste, consistency, color, temperature, shape, and method of preparation.  In this paper, we present a multi-objective 
and multi-constrained evolutionary algorithm for planning and optimization of daily menus. It is based on the Elitist 
Non-Dominated Sorting Genetic Algorithm [2] and the Baldwinian repair algorithm [6]. The paper also presents an 
example of planning a daily menu by this method to demonstrate the approach.    
 
Key-Words: - multi-objective and multi-constrained optimization, knapsack problem, evolutionary algorithm, Elitist 
Non-Dominated Sorting Genetic Algorithm, repair algorithm, dietary-menu planning. 
 
1   Introduction 
Dietary menu planning is an intractable optimization 
problem because of many constraints and objectives. 
People decide what to eat in highly personal way often 
based on behavioral or social motives. As the knowledge 
about nutrition and its health impact grows, decisions 
become more complex and a support of a computer-
based method is required. 
The dietary menu planning problem is constrained by 
nutrient and non-nutrient requirements. Objectives may 
include cost, seasonal quality, functional quality, and 
aesthetic standards for taste, consistency, color, 
temperature, shape, and method of preparation. This is a 
linear-programming problem because it can be 
formulated as minimizing the objectives, given limited 
resources and competing constraints. We can specify the 
objectives as linear functions and the constraints as 
linear equalities or inequalities. A simplified version of 
the problem considering basic nutrient requirements and 
one objective of cost was firstly solved using a calculator 
in 1941 [1]. Since then the linear programming methods 
have improved significantly, producing cost-optimized 
menus. However, difficulties have been encountered in 
using numerical representations for qualitative factors, 
such as taste, consistency, color, temperature, shape, and 
method of preparation. 
In this paper, we present an evolutionary-computation 
approach to the dietary-menu planning problem. We 
applied the Elitist Non-Dominated Sorting Genetic 
Algorithm (NSGA-II) [2] to generate daily menus 
considering constraints on nutrient and non-nutrient 
requirements and nine objectives of low cost, high 
seasonal quality and functionality, and low deviations 

from uniformly distributed aesthetic standards for taste, 
consistency, color, temperature, shape, and method of 
preparation into account.  
 
 
2   Problem Formulation 
Mathematically, dietary menu planning reduces to a 
multi-objective and multi-constrained (multi-
dimensional) knapsack problem (MDKP) that is easy to 
formulate, yet its decision problem is NP-complete. It 
means that only by using a heuristic optimization 
method a solution can be found quickly (in a polynomial 
time). 
We define the problem as follows: Given food items of 
different values and volumes, find the most valuable 
composition that fits in a knapsack of fixed volumes. 
Values are defined subjectively with respect to food 
functionality, seasonal availability, cost, taste, 
consistency, color, temperature, shape and method of 
preparation. Knapsack volumes are defined by the 
weakly correlated diet-planning principles. 
Food items are selected from a nutritional database that 
integrates nutritional data of more than 7000 (national 
and world-wide) foods. We consider the D-A-CH diet-
planning principles established by the European nutrition 
societies [3]. 
Many other real-world problems can be formulated as a 
MDKP, for example, the capital budgeting problem, 
allocating processors in a distributed computer system, 
project selection, and cutting stock problem. 
 
2.1 Multi-dimensional Knapsack Problem 
 We are given a knapsack of m volumes mkCk ,...2,1, = , 
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and n meal items. Each item i has nine values 
, and m volumes 

, one for each capacity. We 
are looking for a composition of t items, , such that 
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are minimized, where  is the number of possible 
states of an aesthetic standard l. The functions used in 
the above objective function are defined as follows: 
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2.2 Metods for Solving MDKPs 
Exact algorithms that deliver optimum solutions to 
multi-dimensional knapsack problems in pseudo-
polynomial time are based on the branch-and-bound and 
the dynamic programming approaches. On the other 
hand, heuristic methods with time complexity bounded 
by a polynomial in the size parameters of the problem 
have been known for many decades. A comprehensive 
review of the multi-constrained 0-1 knapsack problem 
and the associated heuristic algorithms is given by Chu 
and Beasley [4]. Some of the ideas are also applicable to 
non-0-1 MDKPs. 
 
 
3   Problem Solution 
In our case, a knapsack denotes a daily menu that is 
composed of five meals. By default meals include a 
breakfast, a morning snack, a lunch, an afternoon snack, 
and a dinner. However, this composition does not bias 
the method and can be modified to suit the specific 
menu-planning problem.  
Because the menu planning is a multi-dimensional 
problem with many infeasible solutions (that violate at 
least one constraint), we decided to solve it by 
evolutionary algorithms that have been shown to be well 
suited for solving problems characterized by local 
minima. Although evolutionary algorithms search 
through an arbitrary search space by random decisions, 
they are far from random search routines. Modeling the 
random decisions using Markov chain analysis, it was 
shown that evolutionary algorithms can converge to 
globally optimum solutions [5]. 

3.1 Evolutionary Algorithm 
We have applied a powerful evolutionary algorithm 
NSGA-II that is well suited for finding multiple trade-off 
optimal solutions to multi-objective and multi-
constrained problems. The trade-off optimal solutions 
cannot be improved upon without hurting at least one of 
the objectives, and are called Pareto-optimal solutions 
[2] . 
 
3.2 Encoding 
We encode candidate solutions of the daily menu-
planning problem by integer-valued coding. In our 
representation, a chromosome contains five data, one for 
each meal. They carry the information (an identification 
code) about the meals. Considering approximately 15-
100 meals per each meal group, the number of possible 
solutions is roughly estimated to . 550
 
3.3 Populations 
In our implementation, the algorithm NSGA-II starts the 
evolution from a population of either random candidate 
solutions or solutions known from experience. The 
population’s size is N and remains constant over all 
generations.  
 
3.4 Fitness evaluation 
In each generation, the fitness of the population is 
evaluated using the following objective functions: 
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where denotes the functionality of the meal item i,  
its quality in the season,  the cost,  the taste,  
the consistency,  the color,  the temperature,  
the shape,  the method of preparation, and the 
number of possibilities for the l
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9iv
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th aestetic standard. The 
meal parameters 9,...,1, =jvij , are estimated from the 
parameters of food items included into a given meal i. 
The aim of the evolutionary algorithm is to minimize the 
objective functions of (1). 
 
3.5 Infeasible Solutions 
A candidate solution may be highly fit but infeasible if it 
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violates at least one of the following problem 
constraints:  
 The energy provided by the meal has to be within the 

lower limit and the upper limit: 
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where iEω denotes the energy of a given meal item i, 
 a binary value of the item i, and E the daily 

requirement for energy. 
ix

 The basic nutrients (i.e., proteins, lipids and 
carbohydrates) need to be balanced: 
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where iPω , iLω , iCω  denote the quantity of proteins, 
lipids and carbohydrates, respectively, in a given 
meal item i. Because the quantities are expressed in 
grams, conversion factors (4 for proteins and 
carbohydrates, and 9 for lipids) are required to attain 
to calories. We applied usual balancing factors for 
adults (0,1 and 0,15 for proteins, 0,15 and 0,3 for 
lipids, and 0,55 and 0,75 for carbohydrates) but may 
be changed. 

 Simple sugars should account for only 10 percent or 
less of the total energy intake: 
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 The daily intake of saturated fatty acids should be 
limited to 10 percent of the total energy intake: 
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 The recommended daily intake of the dietary fiber is 
10 grams per 1000-kalorie energy intake and should 
not exceed 40 grams: 
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 The minimum and the maximum sodium 
requirements for adults in Slovenia are set at 550 and 
2400 milligrams per day, respectively [9]: 
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3.5.1 Repair Algorithm 
We decided to repair a certain part of infeasible solutions 
in each generation to speed up the procedure of finding 
an optimal solution. We applied the Baldwinian repair, 
where replacement is used only to evaluate the fitness 
values of each solution [6]. Certain critical meals were 
‘replaced’ with more appropriate ones. Critical meals do 
not satisfy the constraints on major food groups (i.e., 
breads, cereal, rice, and pasta / vegetables / fruits / milk, 
yogurt, and cheese / meat, poultry, fish, beans, eggs, and 
nuts / fats, oils, and sweets). Namely, a daily menu has 
to be composed of a certain number of foods from each 
major food group. There may be limitations on 
frequency of red meat, fish, potatoe etc. 
 
3.6 Selection 
In order to form a new generation, a binary tournament 
approach is applied. Solutions from both – the parent 
and the previous offspring – populations can take part in 
the tournament if they are sorted by two attributes, i.e., a 
non-domination rank and a crowding distance. Initially, 
the offspring population is an empty set.  
First, solutions are sorted by the fast non-dominated 
sorting approach of the NSGA-II. In this approach, best 
non-dominated solutions become elites of identical 
importance, forming Pareto-optimal fronts. Solutions are 
non-dominated if none solution is better than the others 
with respect to all equally important objectives. Because 
every solution from the population is checked with a 
partially filled population for domination, the maximum 
time complexity of the non-dominated sorting approach 
is , where  is the population size and m the 
number of objectives.  

)4( 2mNO N2

Then, solutions are sorted according to their crowding 
distances. A crowding distance is a measure of the 
search space around a chosen solution, which is not 
occupied by any other solution in the population. Its 
computation requires sorting of the populations 
according to each objective function value in their 
ascending order of magnitude. Thereafter, for each 
objective function, the boundary solutions (solutions 
with the smallest and the largest function values) are 
assigned an infinite distance value. All other solutions 
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are assigned a distance value equal to the absolute 
difference in the function values of two adjacent 
solutions. This calculation is continued with other 
objective functions. The overall crowding distance value 
is calculated as the sum of individual distance values 
corresponding to each objective. The maximum time 
complexity of this sorting approach is . )2log2( NmNO
A solution i wins a tournament with another solution j if 
both solutions are feasible or infeasible and any of the 
following conditions are true: 
 It has a better non-domination rank than solution j. 
 Having the same non-domination rank, it has better 

crowding distance than solution j. 
The first condition makes sure that solution i lies on a 
better Pareto front than solution j. The second condition 
resolves the tie of both solutions being on the same non-
dominated front by deciding on their crowded distance. 
The one residing in less crowded area wins. If one 
solution is feasible and the other is not, the feasible one 
wins the tournament.  
Performing N tournaments, we obtain a new parent 
population of size N. Other N solutions from the least 
important Pareto fronts having a smaller crowding 
distance are discarded.  
  
3.7 Crossover and Mutation 
Solutions from the new parent population are mated 
pair-wise (using a two-point crossover operator) and 
mutated to create a new offspring population of size N. 
This completes one iteration. 
Mutation is performed on randomly selected elements of 
the chromosome. The mutation rate is set to be a small 
value that linearly decreases with iterations. The selected 
elements are mutated by replacing the meal with a meal 
of the same type, or a food item from certain randomly 
selected food groups (such as fruits, salads, breads, oils) 
with alternatives.  
 
 
4   Evaluation of the Method 
As a demonstration, we applied the NSGA-II to a 
problem of planning daily menus for people without 
specific dietary requirements in a local hospital.  
In Tab. 1, we list the parameters used to generate daily 
menus by the NSGA-II. We ran the algorithm for 25 
times to obtain the experimental results presented in 
Tab.2. In Fig.1, a part of the feasible search space, 
whose shape is depicted for three objectives but actually 
modified by nine objectives, is presented. In Fig.2, it can 
be seen how solutions in point of cost, seasonal quality, 
and functionality converge to the Pareto-optimal 
solutions with time (evaluations). Tab.3 gives a subset of 
the analysis results of a daily menu generated by the 
NSGA-II.  

5   Conclusion 
In this paper, we have presented a computer-based 
method for daily menu planning that considers many 
constraints and nine objectives. It is based on the NSGA-
II evolutionary algorithm that selects an optimal 
combination of meals to form a daily menu of low cost, 
high seasonal and functional quality, and high aesthetic 
standards. The method is used within a dietary menu 
planning tool applied as a Web-based application [7] that 
incorporates the strength of meta-heuristic evolutionary 
algorithms and linear programming methods. We have 
also presented the repairing algorithm that was required 
for maintaining the feasibility of solutions. The 
experimental results showed that the approach 
distinguishes with efficiency and effectiveness. 
As the problem of dietary menu-planning belongs to the 
multi-dimensional knapsack problems, the method could 
be useful for other intractable problems from this wide 
group. 
Parallel implementation of the multi-level NSGA-II for 
dietary menu planning deserves future attention.  

 
 

Table 1. The parameters of the evolutionary 
algorithm. 

Parameter The daily-menu level 
Chromosome length 5 
Population size 100 
Crossover probability 0,7 
Mutation probability 0,2-0,01 
Selection type Binary tournament selection 
Crossover type Two-point crossover 
Mutation type Linear descending mutation 
Number of iterations 90 

 
 

Table 2. The experimental results of the evolutionary 
algorithm. 

Percentage of  infeasible solutions in each 
new generation 

89 % 

Percentage of successfully repaired infeasible 
solutions  

65 % 

 
 Cost 

(€) 
Quality 

in season 
Functional
quality 

Best result 3,08 18 0 
Median 9,7 28 6 
Worst result 22,8 48 12 
Mean value 9,7 28,3 5,8 
Standard deviation 3,1 4,7 3,4 
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Figure 1. A part of the problem’s search space. 
 

 

 

 

 
Figure 2. The objective function values. 

Table 3. The analysis results of a low-cost and high-
quality appetizing weekly menu generated by 

computer. 
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Energy (kcal) 2036 2000 102 % 
Proteins (% of 
energy) 16  > 10    

Lipids (% of 
energy) 28  < 30    

Carbohydrates (% 
of energy) 56  > 50    

Simple sugars % of 
energy) 4,5  < 10    

Saturated fats (% of 
energy) 6,6  < 10    

Ratio of omega-6 to 
omega-3 fatty acids 3,9:1 5:1   

Dietary fibre (g) 33,6  30-40    
Cholesterol (mg) 160  300    
Sodium (mg) 2500  550-2400  104 % 
Breads, cereal, rice, 
and pasta (no. of 
units) 

11,2 11 102 % 

Vegetables (no. of 
units) 4,7 5 94 % 

Fruits (no. of units) 3 3 100 % 
Milk, yogurt, and 
cheese (no. of 
units) 

2 2 100 % 

Meat, poultry, fish, 
beans, eggs, and 
nuts (no. of units) 

1,9 2 95 % 
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