

Experiments on Cryptanalysing Block Ciphers via Evolutionary
Computation Paradigms

Nalini N
Department of Computer Science and Engineering,

Siddaganga Institute of Technology, Tumkur 572103, Karnataka, India

Raghavendra Rao G

National Institute of Engineering, Mysore 570008, Karnataka, India

Abstract: Evolutionary computation techniques have been effectively used to solve a number of optimisation

problems. Cryptanalysis of ciphers has been attempted through several methods such as brute force attack,

linear and differential cryptanalysis and heuristic-based approaches. Most papers in the literature use

heuristic search to classical ciphers such as simple substitution or transposition ciphers. To demonstrate the

power of evolutionary techniques for attacks of modern-day ciphers, we report for the first time systematic

experiments on heuristic-based attacks of Simplified Data Encryption Standard (SDES) and Modified

version of Data Encryption Standard (DES) and present our conclusions. Though these are simpler ciphers,

they contain the significant building blocks and features present in other complex ciphers. Thus the studies

reported in this paper will be useful for the heuristic attack of other similar ciphers.

Keywords: Cryptanalysis,EvolutionaryComputation, Block ciphers, GeneticAlgorithms, ParticleSwarm

Optimisation,TabuSearch,Simplified Data Encryption Standard

1 INTRODUCTION

Automated cryptanalysis has gained significant

interest in recent years since human interaction is a

time-consuming process. In several cryptanalysis

problems, from among a large number of potential

solutions, the candidate keys not eligible should be

eliminated in a systematic manner. Such a pruning

of the search space is possible using combinatorial

optimisation heuristics. Studies on cryptanalysis of

even simple block ciphers using heuristic search

methods are useful for attacks of more complex

ciphers with similar characteristics/structure. An

attack on a cipher can make use of the ciphertext

alone or it can use some plaintext and its

corresponding ciphertext (referred to as a known

plaintext attack). The first category of attack is

harder and more challenging and thus we consider

such an attack in this paper. Automated techniques

can also be useful in the area of cipher design.

 Significant amount of research work has been

reported on cryptanalysis of ciphers which consist of

a combination of a number of simple operations

such as substitutions and permutations. Clark et

al.[1] have carried out interesting research on the use

of optimization heuristics such as genetic algorithms

(GA) [3],[9],tabu search [2] and simulated annealing

[5], for the automated cryptanalysis of classical

ciphers. These papers consider simple substitution

and permutation ciphers. Cryptanalysis of a simple

substitution cipher has been discussed by Spillman

et al. [7]. Knapsack cipher attack is described by

Spillman [6].

Realising that studies on the attack of practical

complex cryptosystems using evolutionary

techniques have not been reported, we present in this

paper our study on the cryptanalysis of Simplified

Data Encryption Standard (SDES) and a modified

version of DES (Data Encryption Standard)

designed to make the implementation effort

tractable. To the best of our knowledge, such efforts

have not been reported in the literature. Though

these are comparatively simpler ciphers, such studies

will give better insights into the attack of DES and

other present day ciphers, using evolutionary

Proceedings of the 7th WSEAS International Conference on Evolutionary Computing, Cavtat, Croatia, June 12-14, 2006 (pp20-27)

methods. Though some of these simplified ciphers

are amenable to brute force attacks, studies reported

in this paper are useful in the cryptanalysis of other

complex ciphers and in exploring the weakness of

ciphers. The basic building blocks of most block

ciphers have certain similarities, it is thus felt that

our studies on evolutionary computation can be

extended to study attacks of other ciphers. Also if

evolutionary computation-based approach is

unsuccessful on these simple systems, it is unlikely

to be worthwhile to apply such approach to more

complicated systems. As candidate evolutionary

computation techniques, we consider here genetic

algorithm, and its adaptive variant, particle swarm

optimisation and tabu search method.

 In view of the above motivation to carry out this

study on simpler ciphers, we consider the modified

versions of DES with 16 bit key without S-box and 4

rounds; other than the SDES. The rest of the paper is

organized as follows. Section 2 presents a brief

overview of the ciphers considered in this paper. The

evolutionary approaches considered in this research

work are summarized in section 3. Section 4

presents the experimental studies carried out and the

results obtained for the SDES algorithm.

Experiments and the relevant results for modified

DES are discussed in section 5. Conclusions are

presented in section 6.

2 SIMPLE BLOCK CIPHERS

STUDIED

2.1 The SDES Algorithm

 The SDES [10] encryption algorithm takes an 8-

bit block of plaintext and a 10-bit key as input and

produces an 8-bit block of ciphertext as output. The

decryption algorithm takes an 8-bit block of

ciphertext and the same 10-bit key used as input to

produce the original 8-bit block of plaintext. The

encryption algorithm involves five functions; an

initial permutation (IP), a complex function called fK

which involves both permutation and substitution

operations and depends on a key input; a simple

permutation function that switches (SW) the two

halves of the data; the function fK again, and a

permutation function that is the inverse of the initial

permutation (IP
-1
). The details of SDES algorithm

are not presented here due to lack of space and can

be found in [10].

 2.2 Modified DES

 IBM designed Data Encryption Standard in

1970; later it was adopted as a standard. A detailed

description of the algorithm is provided in [10].

Simplifying the Problem

For the purpose of cryptanalysis, two cases were

considered.

1. Reduced number of rounds
 Here we considered only few rounds of DES

algorithm so as to simplify the problem.

 Typically in cryptanalysis we used DES with six
rounds.

2. Removing SBOX
 The strength of DES lies in the non-linearity
induced by SBOX, so we thought of initially
eliminating the SBOX in the encryption and
decryption phases. But looking into the algorithm,
the elimination of SBOX is not straightforward. It
is clear that each round takes 32-bit inputs Li-1 and
Ri-1 from the previous round, and produces 32-bit
outputs Li and Ri, for 1 ≤ I ≤ 16,as follows;

 Li=Ri-1 (1)

 Ri=Li-1⊕ f (Ri-1, Ki) (2)

where f (Ri-1, Ki) = P (S (E (Ri-1) ⊕ Ki)). (3)

From equation 3, Ri-1 (32-bit) is expanded to 48-bit
using Table 1 and it is XORed with Ki . Result of
this is subjected to SBOX, to get a 32-bit output. To
eliminate the SBOX, we use Table 2 after XOR
operation in equation 3. We have derived the entries
in the table from the expansion table shown in Table
1,by eliminating all those entries, which occur
second time. The input to an SBOX is 6 bits and
output is 4 bits. The above operations ensure the
flow of this bit pattern when the SBOX is removed.
Removal of the SBOX needs special consideration
to develop the steps of the algorithm.

The Algorithm

The standard DES algorithm and its variant for the
16-bit case are presented below.

INPUT: Plaintext m1,…,m64; 64-bit key
K=k1,…,k64 (including 8 parity bits)
OUTPUT: 64-bit cipher text block C=C1,…,C64
1.Key schedule: Compute sixteen 48-bit round keys
Ki from K.

Proceedings of the 7th WSEAS International Conference on Evolutionary Computing, Cavtat, Croatia, June 12-14, 2006 (pp20-27)

2. (L0, R0)�IP (m1m2…m64)

3.for I from 1 to 16,compute Li and Ri

a. Expand Ri-1=r1r2…r32 from 32 to 48 bits, T�E
(Ri-1)

b. T'�T⊕ Ki.Represent T' as eight 6-bit character
strings (B1…B8)=T'
c. T''�(S1 (B1), S2 (B2)…S8 (B8))
d. T'''�P (T'')
4.b1b2…b64�(R16, L16)(Exchange final blocks
L16, R16)
5.C�IP

-1
(b1b2…b64)

16-bit key DES
 We have designed 16-bit DES algorithm and used
heuristics for cryptanalysis of this cipher. The details
of the algorithm and the relevant tables are not
shown here due to lack of space.

Table 1: Expansion and Permutation

Table 2:Eleiminating SBOX

3 EVOLUTIONARY ALGORITHMS

3.1 Fitness Function or Cost

 We consider various fitness functions based on the
following features.
1. Monogram and bigram statistics

To implement this fitness function, the

frequency of each character in the decrypted text is

calculated. This frequency is normalized by dividing

it by the total number of characters in the file. This

normalized frequency is then subtracted from the

expected frequency of the character in normal

English text. The absolute value of this difference is

taken. The differences for all characters are added

together. The normalization takes care that this value

always lies between 0 and 1.

 The bigram is an extension of unigram to two
characters. Now rather than calculating frequency of
individual character, we calculate frequency of
“pairs” of letters. For example, a pair “an” will
always appear more frequently than pair “bt”. Again
statistics for the frequencies of these pairs are also
available. These statistics are compared with the
statistics obtained from the decrypted text.
 To implement this fitness function, the frequency
of each pair of letters in the decrypted text is
calculated. This frequency is normalized by dividing
it by the total number of pairs in the file. This
normalized frequency is then subtracted from the
expected frequency of the pair in normal English
text. The absolute value of this difference is taken.
The differences for all pairs are added together. The
normalization takes care that this value always lies
between 0 and 1.
 The fitness function based on monogram and
bigram is given by,
∑{|SF [i]-DF [i]|+ ∑|SDF [i, j]-DDF [i, j]|}/4, i =1 to
26,j=1 to 26. (4)

 Here the letters A…Z are referenced by the
indices 1…26, SF [i] is the standard frequency of
character i in English, DF [i] is the measured
frequency of the character i in English. SDF is the
standard bigram frequency and DDF is the decoded
bigram frequency.
2.Count of intelligible characters represented by
ASCII
This is the most simple, efficient and effective

fitness function of all the fitness functions tried in

our experiments. To calculate fitness of a key, we

simply calculate the number of readable characters

in the decrypted text(a-z and A-Z).

 We further normalize this value by dividing this

number by the size of the file in bytes. For a perfect

key, all the characters will be readable and hence

this value will be one. Since our algorithms are

implemented to solve minimization problems, we

simply subtract this value from 1 to get the fitness of

a key.

 Intuition behind this approach is that the message

is made up of readable characters. So the decrypted

text should also contain the readable characters.

 E

32 1 2 3 4 5

4 5 6 7 8 9

8 9 10 11 12 13

12 13 14 15 16 17

16 17 18 19 20 21

20 21 22 23 24 25

24 25 26 27 28 29

28 29 30 31 32 1

 P

16 7 20 21

29 12 28 17

1 15 23 26

5 18 31 10

2 8 24 14

32 27 3 9

19 13 30 6

22 11 4 25

1 2 3 4 5 6 9 10

11 12 15 16 17 18 21 22

23 24 27 28 29 30 33 34

35 36 39 40 41 42 45 46

Proceedings of the 7th WSEAS International Conference on Evolutionary Computing, Cavtat, Croatia, June 12-14, 2006 (pp20-27)

More the intelligible characters, better is the key,

lower is the fitness value of the key. Since this

approach does not require any table lookups, it is

also the most efficient approach seen so far.

 In the experiments performed, it was found that
this function does give fair weight to the key. The
fitness value decreases more rapidly than other
fitness function values. It also spans almost the
complete range from 0 to 1.
 The formula for this fitness function can be given
as follows:
f = 1-c/n;
where c = number of characters falling in the
range a-z or A-Z
 n = total number of characters in the file.
 3. Combination of different cost functions with

different weights:

 In one more approach of assigning the fitness

values to individuals, we used combination of more

than one fitness function and assigned weights to it.

Thus the new fitness value was calculated as

follows:

ƒ=α*unigram+ β*bigram+µ*intelligible_char
where α, β, and µ are the weights of the respective

fitness functions and α+β+µ=1. This fitness function

was also found to be quite useful during our

cryptanalysis studies.

3.2 Genetic Algorithm

 Genetic algorithms are developed based on the

idea of emulating the evolution of a species. Details

on genetic algorithms and their application to

optimisation problems are extensively treated by

Goldberg [3] and Srinivas et al. [9]. Keys in

cryptanalysis studies are represented as a string of

bits in the chromosome and genetic operators

process this bit string. The fitness function is given

in eqn. (4).

3.3 Adaptive Genetic Algorithm

 A Genetic Algorithm gets stuck in local minima.

One of the most celebrated ways to make a genetic

algorithm come out of local minima is Adaptive

Genetic Algorithm [8]. We have seen that there are

many parameters like probability of crossover,

probability of mutation, etc. which control the

execution of a Genetic Algorithm. Usually these

parameters remain constant throughout the execution

of the program. This is exactly where Adaptive

Genetic Algorithm (henceforth AGA) differs from

normal Genetic Algorithm (henceforth GA). As we

shall see, this difference makes AGA [8] perform a

lot better than GA in difficult conditions.

 The significance of pc and pm, probabilities of
crossover and mutation, in controlling GA
performance has long been acknowledged in GA
research [9]. The choice of pc and pm is known to
critically affect the behaviour and performance of
the GA, and a number of guidelines exist in the
literature for choosing pc and pm. These generalized
guidelines are inadequate as the choice of the
optimal pc and pm becomes specific to the problem
under consideration.
Most intuitive way of changing the values of pc and
pm is to change them according to the fitness values
of the individuals. Obviously, we want to give more
chances for crossover for “good” parents. Also,
“good” children should be refrained from being
perturbed by mutation. For this reason, probability
of crossover, pc, should be higher for parents having
low fitness values (remember, we are dealing with
minimization problem rather than a conventional
maximization problem). At the same time,
probability of mutation, pm, should be lower for
children having low fitness values. Thus, in this
adaptive technique, we will have different values of
pc and pm for different generations. Having noted
these proportionalities between fitness values and
required values for pc and pm, we now discuss the
exact formulae to calculate these values on the fly.
[8] Provides good guidelines for the calculation of

pc and pm for each individual for a maximization

problem. Since we are dealing with minimization

problem, we have modified these formulae slightly

to adjust them for our problem. The formulae are,

pc= k1 / (favg-fmin);
pm= k2 / (favg-fmin);
where, fmax = the fitness of the best key in the
generation;
fi= fitness of the key under consideration.
Also k1 and k2 are the scaling parameters which are

fixed before the execution of the program. As we

can see, higher the value of favg, higher the

difference (favg-fmin) and lower is the value of pc.

Thus, lower values are given less chance of

crossover. Values of k1 and k2 are fixed in such a

way that values of pc and pm always remain in the

range 0-1.

 Thus having changed values of pc and pm, the

problem of local minima is solved to some extent.

AGA does come out of local minima providing

improved results as compared to GA. However, a

stage reaches when average population seizes to

change. At this stage, AGA saturates and values of

pc and pm remain constant. AGA then converges

back to GA and gets stuck in local minima again. To

solve this problem, we have come up with somewhat

Proceedings of the 7th WSEAS International Conference on Evolutionary Computing, Cavtat, Croatia, June 12-14, 2006 (pp20-27)

haphazard but effective scheme of periodic changes

in pc and pm values.

3.4 Tabu Search

 The tabu search [2] prevents the search from
returning to a previously explored region of the
solution space too quickly. This is achieved by
retaining a list of possible solutions that have been
previously encountered. These solutions are called
‘tabu’; hence the name of the technique. The size of
the tabu list influences the performance of the
algorithm. Tabu search is similar to simulated
annealing with the added constraint of the tabu list.
Two randomly chosen key elements are swapped to
generate candidate solutions. In each iteration, the
best new key formed replaces the worst existing one
in the tabu list. The algorithm can be found in [2].
 Though strictly not based on evolutionary
paradigm, tabu search is considered in this work
because of certain similarities it possesses with the
genetic algorithm. The tabu search, like the genetic
algorithm, introduces memory structure into its
workings. The tabu search utilises memory to
prevent the search from returning to a previously
explored region of the solution space too quickly. In
each iteration, a list of candidate solutions is
proposed and these solutions are obtained in a
similar fashion to the mutation operation used in the
genetic algorithm.

3.5 Particle Swarm Optimization

(PSO)

 In [4] James Kennedy et al. propose a new

technique called particle swarm, which borrows the

idea from bird flocking, fish schooling, and swarm

theory. We have used this technique in the

cryptanalysis of DES.

 3.5.1 The Principle

 PSO shares many similarities with evolutionary

computation techniques such as Genetic Algorithms

(GA). The system is initialized with a population of

random solutions and searches for optima by

updating generations. However, unlike GA, PSO has

no evolution operators such as crossover and

mutation. In PSO, the potential solutions, called

particles, fly through the problem space by

following the current optimum particles. Compared

to GA, the advantages of PSO are that PSO is easy

to implement and there are few parameters to adjust.

PSO has been successfully applied in many areas;

function optimization, artificial neural network

training and fuzzy system control. PSO has been

used in cryptography to solve the tough problem of

integer factorization.

 PSO simulates the behavior of bird flocking.

Suppose a group of birds are randomly searching

food in an area. All the birds do not know where the

food is. The effective strategy is to follow the bird

which is nearest to the food. In PSO, each single

solution is a “bird” in the search space. We call it

“particle”. All particles have fitness values, which

are evaluated by the fitness function to be optimized,

and have velocities which direct the flying of the

particles. The particles fly through the problem

space by following the current optimum particles.

 PSO is initialised with a group of random
particles (solutions) and then searches for optima by
updating generations. In each iteration, each particle
is updated by following two "best" values. The first
one is the best solution (fitness) it has achieved so
far. This value is called best. Another "best" value
that is tracked by the particle swarm optimiser is the
best value, obtained so far by any particle in the
population. This best value is a global best and is
called gbest. When a particle takes part of the
population as its topological neighbours, the best
value is a local best and is called lbest.
After finding the two best values, the particle
updates its velocity and position with the following
two equations:
v[]=v[] + p_incr * rand() * (pbest[] - present[]) +
g_incr * rand() * (gbest[] - present[]) (6)

 present[] = persent[] + v[] (7)

v[] is the particle velocity, persent[] is the current
particle (solution), pbest[] and gbest[] are defined as
stated before, rand () is a random number between
(0,1), p_incr, g_incr are learning factors. Usually
p_incr, g_incr = 2. However, the values of p_incr,
g_incr are problem-dependent. As it can be easily
seen, higher values of g_incr help particles to move
out of local minima. Thus, usually in our
experiments, we have taken higher values of g_incr.
 Particles' velocities on each dimension are
clamped to a maximum velocity Vmax. If the sum of
accelerations cause the velocity on that dimension to
exceed Vmax, which is a parameter specified by the
user, then the velocity on that dimension is limited
to Vmax.
 In our implementation, each particle corresponds
to a key. The fitness of a key is found by one of the
fitness functions discussed in the previous section.
Since DES uses seven byte key, our search space is
7-dimensional. Thus each byte corresponds to a
separate direction. Vmax is varied throughout the
experiments. The range varied is from 8-64.

Proceedings of the 7th WSEAS International Conference on Evolutionary Computing, Cavtat, Croatia, June 12-14, 2006 (pp20-27)

Remember that a particle can take a maximum of
256 different values in each direction.

3.5.2 p_incr and g_incr

 As we have seen, two parameters we can play
around in PSO are p_incr and g_incr. They are so
called learning factors of the algorithm. Higher
values of p_incr allow a particle to move towards its
direction of search faster. Higher values of g_incr
allow all the particles to move in the direction of
group leader faster. These are very essential
parameters in PSO. In a discrete optimisation
problem such as cryptanalysis of DES, it is better to
have higher values of g_incr.

3.5.3 The Group PSO

 Here we discuss a unique variation of Particle
Swarm Optimisation. In the PSO algorithm that we
have seen, there is a single swarm made up of large
number of particles. Experiments show that
increasing the number of particles in a single swarm
does not give better results. It only adds to more
computation. In order to divide the search space, we
explore the option of “group of swarms”, a concept
proposed by us for the first time.
 In this concept, there are many swarms active at a
given time. The swarms are initialised in such a way
that they are evenly distributed across the search
space. In ideal case, their movements should not
overlap. To achieve this, proper distribution of
swarms across the search space is important. Each of
the swarms moves through the search space
independently irrespective of other swarms. Each
swarm has its own global best and rest of the
particles in that swarm try to follow that global best.
 The algorithm provided remains the same except
that there are many versions of this algorithm
running at the same time. This is an ideal situation
for multiprocessor systems or grids. However, in our
experiments we have implemented the group swarm
algorithm for sequential execution. The speedup
achieved by the parallel version or on a grid could
be an interesting thing to investigate. Since there is
very little communication among swarms, there are
many opportunities to modify the algorithm so that it
suits well for parallel or distributed execution.

4 EXPERIMENTS AND RESULTS

FOR SDES

 Following are the results obtained using different
heuristic techniques. The success of retrieving the

key is discussed under each case below. The timings
reported are on a timeshared configuration; thus
relative performance can be considered.

4.1 Tabu Search

 Tabu search performed consistently better than
other heuristics. The average time taken by tabu
search to find the correct key was about 27 seconds.
It took on an average 344 decryptions for finding the
correct key. It is significantly better than 512
(average) decryptions in brute force attack. Note
that, in this case, brute force attack is very simple
and quite efficient too. Tabu search was consistent in
the sense that it always provided the answer within
the range of 20-40 seconds.

4.2 Particle Swarm Optimisation

 The second heuristic tried was PSO. PSO
performed well in some cases and performed badly
in others. PSO has given answers in 5 seconds in the
best case, whereas at times it took as long as 50
seconds to get the correct keys. The performance of
PSO depends upon the random seed that has to be
given to the algorithm. Unfortunately, there are no
guidelines about how to give this seed. PSO on an
average took 400 generations performing better than
the brute force method.

 4.3 Adaptive Genetic Algorithm

 Adaptive Genetic Algorithm with periodic
changes in pc and pm values extracted the key in 42
seconds on an average. It required 460 decryptions
to get the correct key. AGA, thus, was worse than
both PSO and tabu search but it was slightly better
than brute force attack in terms of number of
function evaluations (decryptions).

4.4 Genetic Algorithm

 Genetic Algorithm did not perform better than
brute force method. Timings are not mentioned here
because parameters given to GA were such that
number of function evaluations should be less than
1024 – the worst case for brute force. However, GA
was unable to find the solution in 1024 function
evaluations.

5 EXPERIMENTS AND RESULTS

FOR MODIFIED DES

5.1 Adaptive Genetic Algorithm

Proceedings of the 7th WSEAS International Conference on Evolutionary Computing, Cavtat, Croatia, June 12-14, 2006 (pp20-27)

 Experiments with same parameters as GA were
performed. We provide some representative results
here. AGA with fitness function-based changes of
parameters was run for cryptanalysis of 6 round
DES. In this particular experiment, population size
was 500.There are considerable improvements over
normal GA. Fitness value started at about 0.85 and it
came down to almost 0.4.
 Also, it can be seen that the number of times the
change that occurred in best fitness value of a
generation is also quite high. This asserts the fact
that AGA has come out of local minima many times.
 In another experiment performed, we used a

different fitness function named number of

intelligible characters. That resulted in lower values

of fitness function. In the experiment, fitness value

started from around 0.63 and has come down to 0.3

in 500 generations. AGA with periodic changes in

pc and pm has performed a lot better.

5.2 Tabu Search

 We start with a random key which is also added
to the tabu list and name it as current key. We find
out the fitness function of this key. Fitness function
used may be any of those discussed in section 3.1.In
the original tabu algorithm, there are no
specifications regarding how to perturb a particular
solution. In this implementation, we randomly
perturb random number of bits in the current key to
form a set of candidate keys. For this, a random
number, n is generated. This number indicates the
number of candidate solutions that are to be
generated. To generate each of these candidate
solutions, we complement one bit of the current key.
The bit to be complemented is also randomly
selected.
 Once this set of candidate keys is formed, we
calculate the fitness of each candidate key. We select
the best key out of this set of candidate keys. We
check whether this best key is present in the tabu
list. If not, this best key is added to the tabu list and
this best key becomes our current key. We perform
the same steps as above with this key.
 If the best key is in the tabu list and aspiration
criterion is not satisfied (we shortly describe the
aspiration criterion), then we look for the next best
key in the set of candidate keys. This procedure is
continued till a suitable candidate for the next
current key is found or set of candidate keys is
exhausted. If the set of candidate keys is exhausted,
we do not change the current key and perform
different random perturbation with the same key.

 We keep track of the best key obtained so far, so
that we can return this key at the end of the
algorithm. The algorithm may be terminated by a
limit on the number of iterations or if the correct key
is found i.e. if fitness of a key is less than some very
low threshold (about 0.08)
 Tabu list size is the only one parameter we can
manipulate in tabu search. The larger size of tabu list
causes a lot of memory overhead. A very high value
may even lead to segmentation faults. With smaller
size of tabu list, the list gets full quickly; hence we
cannot continue the run for too long. If the old keys
are deleted to make room for new keys, we may re-
search the same search space destroying the whole
purpose of tabu list. Thus, tabu list size is one
critical parameter to choose.

5.2.1 Aspiration Criterion

 Aspiration criterion used in tabu search is always
problem-specific. In this case, we say that aspiration
criterion is satisfied if we do not get a better solution
than the current best solution for 5 iterations. This
number 5 is just an example. Experiments have been
performed with different limits on aspiration
criterion to be satisfied. Thus, if aspiration criterion
is satisfied, we allow the best candidate key to be the
current key even if that candidate key is in the tabu
list.
 The concept of aspiration criterion is important in
tabu search to avoid getting stuck in local minima.
The conjecture is that the aspiration criterion gives
some indication about whether the algorithm is
trapped in local minima or not. Careful thought must
be given while selecting the aspiration criterion. In
our case, if limit on the aspiration criterion is too
small, then the algorithm may unnecessarily change
a correct direction. Large limit on aspiration
criterion makes the algorithm to stay in local minima
for longer than necessary duration. In the search
space of DES keys, there are large number of local
minima. Also, global minimum is due to a discrete
jump. Thus, a smaller than usual limit on aspiration
criterion is advisable.

 Similar sets of experiments were performed with
tabu search as with GA and AGA. In this case, tabu
list size was fixed at 1000 and the limit on aspiration
criterion was 5, i.e. if we did not get a better solution
in five consecutive generations, aspiration criterion
is said to be satisfied. The fitness function used in
this case is Unigram.

5.3 PSO

 PSO and group PSO were used for cryptanalysis
of 6-round DES. We summarize the results of these

Proceedings of the 7th WSEAS International Conference on Evolutionary Computing, Cavtat, Croatia, June 12-14, 2006 (pp20-27)

experiments in this subsection. The fitness function
used was unigram. The fitness value started from
about 0.5 and come down to 0.3 in about 3250
generations. Also, we notice a rapid decrease in the
fitness function at the beginning and the rate of
decrease decreases as we run the experiments for
longer period. This is because as the fitness value
decreases, it becomes more and more difficult to
find a better key. This is the problem with all the
algorithms. PSO, in spite of being so simple, has
performed better than other methods.
 In case of PSO, search space was divided into
100 swarms. At the beginning, it was ensured that
swarms start at different positions. But it is very
difficult to ensure that trajectories of the swarms do
not intersect during the execution. The fitness value
has started from above 0.55 and has come down to
0.22. Number of function evaluations is also quite
high in this case. Thus, PSO is a very promising
approach for solving the problems of cryptanalysis
of DES and any discrete optimisation problem in
general. However, this is a fairly new technique and
there is lot of scope for research in this area. One of
the ideas suggested in this paper, is the exploration
of group PSO in a parallel execution environment.
 The group PSO as compared to GA and AGA
performs better in terms of percentage of successful
attacks, overall execution time, and need to tune
various parameters of the algorithm leading to
simple program development effort.

6 CONCLUSIONS

 Though the keys of 16-bit DES were retrieved in

all experiments using different heuristics, tabu

search and particle swarm optimisation performed

better than the other methods in terms of execution

time.

 The paper has demonstrated the efficacy of
evolutionary computation principles in cryptanalysis
studies. We have considered DES and one of its
simplified variants, along with SDES for our
experiments. Initially it was noticed that
cryptanalysis of DES was hard using genetic
algorithm, adaptive genetic algorithm, particle
swarm optimisation, and tabu search technique.
However, the attack was successful for SDES and
simplified version of DES with 6 rounds,16 bit key
and without S-boxes. For a comparison of the results
obtained from the evolutionary techniques, we have
considered results from Simulated Annealing
technique as the benchmark. We notice that
evolutionary techniques yield better results. These
comparison details are not presented here due to
space constraints. This demonstrates that it is

possible to cryptanalyse block ciphers using
evolutionary techniques. Currently we are
experimenting with 32 bit and 48 bit key DES with
more rounds and S-boxes. We believe that such
studies will certainly establish the applicability of
evolutionary computation techniques to
cryptanalysis studies.

REFERENCES

[1] Clark A and Dawson Ed, “Optimisation

Heuristics for the Automated Cryptanalysis of

Classical Ciphers”, Journal of Combinatorial

Mathematics and Combinatorial Computing, Vol.

28,pp. 63-86, 1998.

[2] Glover Fred, Taillard Eric and Werra Dominique
de, ”A User’s Guide to Tabu Search” Annals of
Operations Research, Vol. 41,pp. 3-28,1993.

[3] Goldberg D.E, “Genetic Algorithms in Search,

Optimisation and Machine Learning”, Boston,

Addison-Wesly, 1989.

[4] James Kennedy and Russell Eberhart, Particle

Swarm Optimisation, Proceedings of the IEEE

International Conference on Neural Networks,

 1995, pp.1942-1948.

[5] Kirkpatrick S, C .D. Gelatt. Jr. and Vecchi M. P,

”Optimisation by Simulated Annealing”, Science,

Vol. 220, No. 4598, pp. 671-680,1983.

[6] Spillman R,”Cryptanalysis of Knapsack Ciphers
using Genetic Algorithms”, Cryptologia, Vol.17,
No.4, pp. 367-377, 1993.

[7] Spillman R, Janssen M, Nelson B and Kepner M,

“Use of Genetic Algorithm in the Cryptanalysis of

Simple Substitution Ciphers”, Cryptologia, Vol. 17,

No.1, pp. 30-44.1993.

[8] Srinivas M and L. M. Patnaik, “Adaptive
probabilities of crossover and mutation in genetic
algorithms,” IEEE Trans. Syst., Man Cybern., vol.
24, pp. 656-667, Apr. 1994.

[9] Srinivas M and Patnaik L.M,”Genetic
Algorithms: A Survey”, IEEE Computer, pp.17-26,
1994.

[10] William Stallings, Cryptography and Network

Security Principles and Practices, Third Edition,

Pearson Education Inc.,2003.

Proceedings of the 7th WSEAS International Conference on Evolutionary Computing, Cavtat, Croatia, June 12-14, 2006 (pp20-27)

