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Abstract: Evolutionary computation techniques have been effectively used to solve a number of optimisation 

problems. Cryptanalysis of ciphers has been attempted through several methods such as brute force attack, 

linear and differential cryptanalysis and heuristic-based approaches. Most papers in the literature use 

heuristic search to classical ciphers such as simple substitution or transposition ciphers. To demonstrate the  

power of evolutionary techniques for attacks of modern-day ciphers, we report for the first time systematic 

experiments on heuristic-based attacks of Simplified Data Encryption Standard (SDES) and Modified 

version of Data Encryption Standard (DES) and present our conclusions. Though these are simpler ciphers, 

they contain the significant building blocks and features present in other complex ciphers. Thus the studies 

reported in this paper will be useful for the heuristic attack of other similar ciphers.  

Keywords:  Cryptanalysis,EvolutionaryComputation, Block ciphers, GeneticAlgorithms, ParticleSwarm   

Optimisation,TabuSearch,Simplified Data Encryption Standard

1 INTRODUCTION 

Automated cryptanalysis has gained significant 

interest in recent years since human interaction is a 

time-consuming process. In several cryptanalysis 

problems, from among a large number of potential 

solutions, the candidate keys not eligible should be 

eliminated in a systematic manner. Such a pruning 

of the search space is possible using combinatorial 

optimisation heuristics. Studies on cryptanalysis of 

even simple block ciphers using heuristic search 

methods are useful for attacks of more complex 

ciphers with similar characteristics/structure. An 

attack on a cipher can make use of the ciphertext 

alone or it can use some plaintext and its 

corresponding ciphertext (referred to as a known 

plaintext attack). The first category of attack is 

harder and more challenging and thus we consider 

such an attack in this paper. Automated techniques 

can also be useful in the area of cipher design.  

      Significant amount of research work has been 

reported on cryptanalysis of ciphers which consist of 

a combination of a number of simple operations 

such as substitutions and permutations. Clark et 

al.[1] have carried out interesting research on the use 

of optimization heuristics such as genetic algorithms 

(GA) [3],[9],tabu search [2] and simulated annealing  

[5], for the  automated cryptanalysis of classical 

ciphers. These papers consider simple substitution 

and permutation ciphers. Cryptanalysis of a simple 

substitution cipher has been discussed by Spillman 

et al. [7]. Knapsack cipher attack is described by 

Spillman [6]. 

 

Realising that studies on the attack of practical 

complex cryptosystems using evolutionary 

techniques have not been reported, we present in this 

paper our study on the cryptanalysis of Simplified 

Data Encryption Standard (SDES) and a modified 

version of DES (Data Encryption Standard) 

designed to make the implementation effort 

tractable. To the best of our knowledge, such efforts 

have not been reported in the literature. Though 

these are comparatively simpler ciphers, such studies 

will give better insights into the attack of DES and 

other present day ciphers, using evolutionary 
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methods. Though some of these simplified ciphers 

are amenable to brute force attacks, studies reported 

in this paper are useful in the cryptanalysis of other 

complex ciphers and in exploring the weakness of 

ciphers. The basic building blocks of most block 

ciphers have certain similarities, it is thus felt that 

our studies on evolutionary computation can be 

extended to study attacks of other ciphers. Also if 

evolutionary computation-based approach is 

unsuccessful on these simple systems, it is unlikely 

to be worthwhile to apply such approach to more 

complicated systems. As candidate evolutionary 

computation techniques, we consider here genetic 

algorithm, and its adaptive variant, particle swarm 

optimisation and tabu search method. 

    In view of the above motivation to carry out this 

study on simpler ciphers, we consider the modified 

versions of DES with 16 bit key without S-box and 4 

rounds; other than the SDES. The rest of the paper is 

organized as follows. Section 2 presents a brief 

overview of the ciphers considered in this paper. The 

evolutionary approaches considered in this research 

work are summarized in section 3. Section 4 

presents the experimental studies carried out and the 

results obtained for the SDES algorithm. 

Experiments and the relevant results for modified 

DES are discussed in section 5. Conclusions are 

presented in section 6. 

 

2 SIMPLE BLOCK CIPHERS 

STUDIED 

2.1 The SDES Algorithm 

      The SDES [10] encryption algorithm takes an 8-

bit block of plaintext and a 10-bit key as input and 

produces an 8-bit block of ciphertext as output. The 

decryption algorithm takes an 8-bit block of 

ciphertext and the same 10-bit key used as input to 

produce the original 8-bit block of plaintext. The 

encryption algorithm involves five functions; an 

initial permutation (IP), a complex function called fK 

which involves both permutation and substitution 

operations and depends on a key input; a simple 

permutation function that switches (SW) the two 

halves of the data; the function fK again, and a 

permutation function that is the inverse of the initial 

permutation (IP
-1
). The details of SDES algorithm 

are not presented here due to lack of space and can 

be found in [10]. 

  2.2 Modified DES  

     IBM designed Data Encryption Standard in 

1970; later it was adopted as a standard. A detailed 

description of the algorithm is provided in [10].  

Simplifying the Problem 

For the purpose of cryptanalysis, two cases were 

considered. 

1. Reduced number of rounds 
   Here we considered only few rounds of DES 

algorithm so as to simplify the problem.    

 
 Typically in cryptanalysis   we used DES with six 
rounds. 
 
2. Removing SBOX 
    The strength of DES lies in the non-linearity 
induced by SBOX, so we thought of initially 
eliminating the SBOX in the encryption and 
decryption phases. But looking   into the algorithm, 
the elimination of SBOX is not straightforward.   It 
is clear that each round takes 32-bit inputs Li-1 and 
Ri-1 from the previous round, and produces 32-bit 
outputs Li and Ri, for 1 ≤ I ≤ 16,as follows; 
                              
                            Li=Ri-1                                      (1)                                                                              
                                                                                      
                    Ri=Li-1⊕ f (Ri-1, Ki)                             (2)                                                      
                                                                                                     
where f (Ri-1, Ki ) = P (S (E (Ri-1 ) ⊕ Ki)).              (3)  
                                                                                                               
From equation 3, Ri-1 (32-bit) is expanded to 48-bit 
using Table 1 and it is XORed with Ki . Result of 
this is subjected to SBOX, to get a 32-bit output. To 
eliminate the SBOX, we use Table 2 after XOR 
operation in equation 3. We have derived the entries 
in the table from the expansion table shown in Table 
1,by eliminating all those entries, which occur 
second time. The input to an SBOX is 6 bits and 
output is 4 bits. The above operations ensure the 
flow of this bit pattern when the SBOX is removed. 
Removal of the SBOX needs special consideration 
to develop the steps of the algorithm.  
     

The Algorithm 

 
The standard DES algorithm and its variant for the 
16-bit case are presented below. 
 

INPUT: Plaintext m1,…,m64; 64-bit key 
K=k1,…,k64 (including 8 parity bits) 
OUTPUT: 64-bit cipher text block C=C1,…,C64 
1.Key schedule: Compute sixteen 48-bit round keys 
Ki from K. 
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2. (L0, R0)�IP (m1m2…m64) 

3.for I from 1 to 16,compute Li and Ri 

a. Expand Ri-1=r1r2…r32 from 32 to 48 bits, T�E 
(Ri-1) 

b. T'�T⊕ Ki.Represent T' as eight 6-bit    character 
strings (B1…B8)=T' 
c. T''�(S1 (B1), S2 (B2)…S8 (B8)) 
d. T'''�P (T'') 
4.b1b2…b64�(R16, L16)(Exchange final blocks 
L16, R16) 
5.C�IP

-1 
(b1b2…b64) 

 
16-bit key DES 
    We have designed 16-bit DES algorithm and used 
heuristics for cryptanalysis of this cipher. The details 
of the algorithm and the relevant tables are not 
shown here due to lack of space. 

 
 
Table 1:  Expansion and Permutation 

 
          
                                                                                                                                                   
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Table 2:Eleiminating SBOX 
 
 

3 EVOLUTIONARY ALGORITHMS 

3.1 Fitness Function or Cost 

  We consider various fitness functions based on the 
following features. 
1. Monogram and bigram statistics 

To implement this fitness function, the 

frequency of each character in the decrypted text is 

calculated. This frequency is normalized by dividing 

it by the total number of characters in the file. This 

normalized frequency is then subtracted from the 

expected frequency of the character in normal 

English text. The absolute value of this difference is 

taken. The differences for all characters are added 

together. The normalization takes care that this value 

always lies between 0 and 1. 

   The bigram is an extension of unigram to two 
characters. Now rather than calculating frequency of 
individual character, we calculate frequency of 
“pairs” of letters. For example, a pair “an” will 
always appear more frequently than pair “bt”. Again 
statistics for the frequencies of these pairs are also 
available. These statistics are compared with the 
statistics obtained from the decrypted text.  
    To implement this fitness function, the frequency 
of each pair of letters in the decrypted text is 
calculated. This frequency is normalized by dividing 
it by the total number of pairs in the file. This 
normalized frequency is then subtracted from the 
expected frequency of the pair in normal English 
text. The absolute value of this difference is taken. 
The differences for all pairs are added together. The 
normalization takes care that this value always lies 
between 0 and 1. 
    The fitness function based on monogram and 
bigram is given by, 
∑{|SF [i]-DF [i]|+ ∑|SDF [i, j]-DDF [i, j]|}/4, i =1 to 
26,j=1 to 26.                                                         (4)                                                      
                                                                                                                                           
    Here the letters A…Z are referenced by the 
indices 1…26, SF [i] is the standard frequency of 
character i in English, DF [i] is the measured 
frequency of the character i in English. SDF is the 
standard bigram frequency and DDF is the decoded 
bigram frequency. 
2.Count of intelligible characters represented by 
ASCII 
This is the most simple, efficient and effective 

fitness function of all the fitness functions tried in 

our experiments. To calculate fitness of a key, we 

simply calculate the number of readable characters 

in the decrypted text(a-z and A-Z).   

     We further normalize this value by dividing this 

number by the size of the file in bytes. For a perfect 

key, all the characters will be readable and hence 

this value will be one. Since our algorithms are 

implemented to solve minimization problems, we 

simply subtract this value from 1 to get the fitness of 

a key. 

    Intuition behind this approach is that the message 

is made up of readable characters. So the decrypted 

text should also contain the readable characters. 

                        E                                               

32 1 2 3 4 5 

4 5 6 7 8 9 

8 9 10 11 12 13 

12 13 14 15 16 17 

16 17 18 19 20 21 

20 21 22 23 24 25 

24 25 26 27 28 29 

28 29 30 31 32 1 

                              P 

16               7 20 21 

29 12 28 17 

1 15 23 26 

5 18 31 10 

2 8 24 14 

32 27 3 9 

19 13 30 6 

22 11 4 25 

1 2 3 4 5 6 9 10 

11 12 15 16 17 18 21 22 

23 24 27 28 29 30 33 34 

35 36 39 40 41 42 45 46 
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More the intelligible characters, better is the key, 

lower is the fitness value of the key. Since this 

approach does not require any table lookups, it is 

also the most efficient approach seen so far. 

    In the experiments performed, it was found that 
this function does give fair weight to the key. The 
fitness value decreases more rapidly than other 
fitness function values. It also spans almost the 
complete range from 0 to 1. 
 The formula for this fitness function can be given 
as follows: 
f = 1-c/n; 
where  c = number of characters falling in the 
range a-z or A-Z 
 n = total number of characters in the file. 
 3. Combination of different cost functions with 

different weights:  

    In one more approach of assigning the fitness 

values to individuals, we used combination of more 

than one fitness function and assigned weights to it. 

Thus the new fitness value was calculated as 

follows: 

ƒ=α*unigram+ β*bigram+µ*intelligible_char 
where α, β, and µ are the weights of the respective 

fitness functions and α+β+µ=1. This fitness function 

was also found to be quite useful during  our 

cryptanalysis studies. 

3.2 Genetic Algorithm 
 

     Genetic algorithms are developed based on the 

idea of emulating the evolution of a species. Details 

on genetic algorithms and their application to 

optimisation problems are extensively treated by 

Goldberg [3] and Srinivas et al. [9]. Keys in 

cryptanalysis studies are represented as a string of 

bits in the chromosome and genetic operators 

process this bit string. The fitness function is given 

in eqn. (4). 

3.3 Adaptive Genetic Algorithm 

     A Genetic Algorithm gets stuck in local minima. 

One of the most celebrated ways to make a genetic 

algorithm come out of local minima is Adaptive 

Genetic Algorithm [8]. We have seen that there are 

many parameters like probability of crossover, 

probability of mutation, etc. which control the 

execution of a Genetic Algorithm. Usually these 

parameters remain constant throughout the execution 

of the program. This is exactly where Adaptive 

Genetic Algorithm (henceforth AGA) differs from 

normal Genetic Algorithm (henceforth GA). As we 

shall see, this difference makes AGA [8] perform a 

lot better than GA in difficult conditions.  

      The significance of pc and pm, probabilities of 
crossover and mutation, in controlling GA 
performance has long been acknowledged in GA 
research [9]. The choice of pc and pm is known to 
critically affect the behaviour and performance of 
the GA, and a number of guidelines exist in the 
literature for choosing pc and pm. These generalized 
guidelines are inadequate as the choice of the 
optimal pc and pm becomes specific to the problem 
under consideration. 
Most intuitive way of changing the values of pc and 
pm is to change them according to the fitness values 
of the individuals. Obviously, we want to give more 
chances for crossover for “good” parents. Also, 
“good” children should be refrained from being 
perturbed by mutation. For this reason, probability 
of crossover, pc, should be higher for parents having 
low fitness values (remember, we are dealing with 
minimization problem rather than a conventional 
maximization problem). At the same time, 
probability of mutation, pm, should be lower for 
children having low fitness values. Thus, in this 
adaptive technique, we will have different values of 
pc and pm for different generations. Having noted 
these proportionalities between fitness values and 
required values for pc and pm, we now discuss the 
exact formulae to calculate these values on the fly. 
[8] Provides good guidelines for the calculation of 

pc and pm for each individual for a maximization 

problem. Since we are dealing with minimization 

problem, we have modified these formulae slightly 

to adjust them for our problem. The formulae are, 

pc= k1 / (favg-fmin); 
pm= k2 / (favg-fmin); 
where, fmax = the fitness of the best key in the 
generation; 
fi= fitness of the key under consideration. 
Also k1 and k2 are the scaling parameters which are 

fixed before the execution of the program. As we 

can see, higher the value of favg, higher the 

difference (favg-fmin) and lower is the value of pc. 

Thus, lower values are given less chance of 

crossover. Values of k1 and k2 are fixed in such a 

way that values of pc and pm always remain in the 

range 0-1. 

      Thus having changed values of pc and pm, the 

problem of local minima is solved to some extent. 

AGA does come out of local minima providing 

improved results as compared to GA. However, a 

stage reaches when average population seizes to 

change. At this stage, AGA saturates and values of 

pc and pm remain constant. AGA then converges 

back to GA and gets stuck in local minima again. To 

solve this problem, we have come up with somewhat 
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haphazard but effective scheme of periodic changes 

in pc and pm values. 

 

3.4 Tabu Search 
 
    The tabu search [2] prevents the search from 
returning to a previously explored region of the 
solution space too quickly. This is achieved by 
retaining a list of possible solutions that have been 
previously encountered. These solutions are called 
‘tabu’; hence the name of the technique. The size of 
the tabu list influences the performance of the 
algorithm. Tabu search is similar to simulated 
annealing with the added constraint of the tabu list. 
Two randomly chosen key elements are swapped to 
generate candidate solutions. In each iteration, the 
best new key formed replaces the worst existing one 
in the tabu list. The algorithm can be found in [2]. 
   Though strictly not based on evolutionary 
paradigm, tabu search is considered in this work 
because of certain similarities it possesses with the 
genetic algorithm. The tabu search, like the genetic 
algorithm, introduces memory structure into its 
workings. The tabu search utilises memory to 
prevent the search from returning to a previously 
explored region of the solution space too quickly. In 
each iteration, a list of candidate solutions is 
proposed and these solutions are obtained in a 
similar fashion to the mutation operation used in the 
genetic algorithm. 

3.5 Particle Swarm Optimization 

(PSO) 

     In [4] James Kennedy et al. propose a new 

technique called particle swarm, which borrows the 

idea from bird flocking, fish schooling, and swarm 

theory. We have used this technique in the 

cryptanalysis of DES.  

 
 3.5.1 The Principle 
 
    PSO shares many similarities with evolutionary 

computation techniques such as Genetic Algorithms 

(GA). The system is initialized with a population of 

random solutions and searches for optima by 

updating generations. However, unlike GA, PSO has 

no evolution operators such as crossover and 

mutation. In PSO, the potential solutions, called 

particles, fly through the problem space by 

following the current optimum particles. Compared 

to GA, the advantages of PSO are that PSO is easy 

to implement and there are few parameters to adjust. 

PSO has been successfully applied in many areas; 

function optimization, artificial neural network 

training and fuzzy system control. PSO has been 

used in cryptography to solve the tough problem of 

integer factorization. 

      PSO simulates the behavior of bird flocking. 

Suppose a group of birds are randomly searching 

food in an area. All the birds do not know where the 

food is. The effective strategy is to follow the bird 

which is nearest to the food. In PSO, each single 

solution is a “bird” in the search space. We call it 

“particle”. All particles have fitness values, which 

are evaluated by the fitness function to be optimized, 

and have velocities which direct the flying of the 

particles. The particles fly through the problem 

space by following the current optimum particles. 

     PSO is initialised with a group of random 
particles (solutions) and then searches for optima by 
updating generations. In each iteration, each particle 
is updated by following two "best" values. The first 
one is the best solution (fitness) it has achieved so 
far. This value is called best. Another "best" value 
that is tracked by the particle swarm optimiser is the 
best value, obtained so far by any particle in the 
population. This best value is a global best and is 
called gbest. When a particle takes part of the 
population as its topological neighbours, the best 
value is a local best and is called lbest. 
After finding the two best values, the particle 
updates its velocity and position with the following 
two equations: 
v[]=v[] + p_incr * rand() * (pbest[] - present[]) + 
g_incr * rand() * (gbest[] - present[])                (6)                                                                     
                                                                                             
 present[] = persent[] + v[]                                   (7) 
                                                                                                       
v[] is the particle velocity, persent[] is the current 
particle (solution), pbest[] and gbest[] are defined as 
stated before, rand () is a random number between 
(0,1), p_incr, g_incr are learning factors. Usually 
p_incr, g_incr = 2. However, the values of p_incr, 
g_incr are problem-dependent. As it can be easily 
seen, higher values of g_incr help particles to move 
out of local minima. Thus, usually in our 
experiments, we have taken higher values of g_incr. 
    Particles' velocities on each dimension are 
clamped to a maximum velocity Vmax. If the sum of 
accelerations cause the velocity on that dimension to 
exceed Vmax, which is a parameter specified by the 
user, then the velocity on that dimension is limited 
to Vmax. 
     In our implementation, each particle corresponds 
to a key. The fitness of a key is found by one of the 
fitness functions discussed in the previous section. 
Since DES uses seven byte key, our search space is 
7-dimensional. Thus each byte corresponds to a 
separate direction. Vmax is varied throughout the 
experiments. The range varied is from 8-64. 
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Remember that a particle can take a maximum of 
256 different values in each direction. 
 
3.5.2 p_incr and g_incr 
 
      As we have seen, two parameters we can play 
around in PSO are p_incr and g_incr. They are so 
called learning factors of the algorithm. Higher 
values of p_incr allow a particle to move towards its 
direction of search faster. Higher values of g_incr 
allow all the particles to move in the direction of 
group leader faster. These are very essential 
parameters in PSO. In a discrete optimisation 
problem such as cryptanalysis of DES, it is better to 
have higher values of g_incr. 
  
3.5.3 The Group PSO 
 
      Here we discuss a unique variation of Particle 
Swarm Optimisation. In the PSO algorithm that we 
have seen, there is a single swarm made up of large 
number of particles. Experiments show that 
increasing the number of particles in a single swarm 
does not give better results. It only adds to more 
computation. In order to divide the search space, we 
explore the option of “group of swarms”, a concept 
proposed by us for the first time.  
    In this concept, there are many swarms active at a 
given time. The swarms are initialised in such a way 
that they are evenly distributed across the search 
space. In ideal case, their movements should not 
overlap. To achieve this, proper distribution of 
swarms across the search space is important. Each of 
the swarms moves through the search space 
independently irrespective of other swarms. Each 
swarm has its own global best and rest of the 
particles in that swarm try to follow that global best. 
      The algorithm provided remains the same except 
that there are many versions of this algorithm 
running at the same time. This is an ideal situation 
for multiprocessor systems or grids. However, in our 
experiments we have implemented the group swarm 
algorithm for sequential execution. The speedup 
achieved by the parallel version or on a grid could 
be an interesting thing to investigate. Since there is 
very little communication among swarms, there are 
many opportunities to modify the algorithm so that it 
suits well for parallel or distributed execution. 
      

4 EXPERIMENTS AND RESULTS 

FOR SDES 
 
 
     Following are the results obtained using different 
heuristic techniques. The success of retrieving the 

key is discussed under each case below. The timings 
reported are on a timeshared configuration; thus 
relative performance can be considered. 

4.1 Tabu Search 

    Tabu search performed consistently better than 
other heuristics. The average time taken by tabu 
search to find the correct key was about 27 seconds. 
It took on an average 344 decryptions for finding the 
correct key. It is significantly better than 512 
(average) decryptions in brute force attack. Note 
that, in this case, brute force attack is very simple 
and quite efficient too. Tabu search was consistent in 
the sense that it always provided the answer within 
the range of 20-40 seconds.  
 

4.2 Particle Swarm Optimisation 

    The second heuristic tried was PSO. PSO 
performed well in some cases and performed badly 
in others. PSO has given answers in 5 seconds in the 
best case, whereas at times it took as long as 50 
seconds to get the correct keys. The performance of 
PSO depends upon the random seed that has to be 
given to the algorithm. Unfortunately, there are no 
guidelines about how to give this seed. PSO on an 
average took 400 generations performing better than 
the brute force method. 

 4.3 Adaptive Genetic Algorithm 

    Adaptive Genetic Algorithm with periodic 
changes in pc and pm values extracted the key in 42 
seconds on an average. It required 460 decryptions 
to get the correct key. AGA, thus, was worse than 
both PSO and tabu search but it was slightly better 
than brute force attack in terms of number of 
function evaluations (decryptions). 
 

4.4 Genetic Algorithm 

  Genetic Algorithm did not perform better than 
brute force method. Timings are not mentioned here 
because parameters given to GA were such that 
number of function evaluations should be less than 
1024 – the worst case for brute force. However, GA 
was unable to find the solution in 1024 function 
evaluations.  
 

5 EXPERIMENTS AND RESULTS 

FOR  MODIFIED DES 

 

5.1 Adaptive Genetic Algorithm 
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     Experiments with same parameters as GA were 
performed. We provide some representative results 
here. AGA with fitness function-based changes of 
parameters was run for cryptanalysis of 6 round 
DES. In this particular experiment, population size 
was 500.There are considerable improvements over 
normal GA. Fitness value started at about 0.85 and it 
came down to almost 0.4.  
     Also, it can be seen that the number of times the 
change that occurred in best fitness value of a 
generation is also quite high. This asserts the fact 
that AGA has come out of local minima many times. 
     In another experiment performed, we used a 

different fitness function named number of 

intelligible characters. That resulted in lower values 

of fitness function. In the experiment, fitness value 

started from around 0.63 and has come down to 0.3 

in 500 generations. AGA with periodic changes in 

pc and pm has performed a lot better.  

 

5.2 Tabu Search 
 
      We start with a random key which is also added 
to the tabu list and name it as current key. We find 
out the fitness function of this key. Fitness function 
used may be any of those discussed in section 3.1.In 
the original tabu algorithm, there are no 
specifications regarding how to perturb a particular 
solution. In this implementation, we randomly 
perturb random number of bits in the current key to 
form a set of candidate keys. For this, a random 
number, n is generated. This number indicates the 
number of candidate solutions that are to be 
generated. To generate each of these candidate 
solutions, we complement one bit of the current key. 
The bit to be complemented is also randomly 
selected. 
     Once this set of candidate keys is formed, we 
calculate the fitness of each candidate key. We select 
the best key out of this set of candidate keys. We 
check whether this best key is present in the tabu 
list. If not, this best key is added to the tabu list and 
this best key becomes our current key. We perform 
the same steps as above with this key. 
     If the best key is in the tabu list and aspiration 
criterion is not satisfied (we shortly describe the 
aspiration criterion), then we look for the next best 
key in the set of candidate keys. This procedure is 
continued till a suitable candidate for the next 
current key is found or set of candidate keys is 
exhausted. If the set of candidate keys is exhausted, 
we do not change the current key and perform 
different random perturbation with the same key. 

     We keep track of the best key obtained so far, so 
that we can return this key at the end of the 
algorithm. The algorithm may be terminated by a 
limit on the number of iterations or if the correct key 
is found i.e. if fitness of a key is less than some very 
low threshold (about 0.08) 
      Tabu list size is the only one parameter we can 
manipulate in tabu search. The larger size of tabu list 
causes a lot of memory overhead. A very high value 
may even lead to segmentation faults. With smaller 
size of tabu list, the list gets full quickly; hence we 
cannot continue the run for too long. If the old keys 
are deleted to make room for new keys, we may re-
search the same search space destroying the whole 
purpose of tabu list. Thus, tabu list size is one 
critical parameter to choose. 
 
5.2.1 Aspiration Criterion 
 
     Aspiration criterion used in tabu search is always 
problem-specific. In this case, we say that aspiration 
criterion is satisfied if we do not get a better solution 
than the current best solution for 5 iterations. This 
number 5 is just an example. Experiments have been 
performed with different limits on aspiration 
criterion to be satisfied. Thus, if aspiration criterion 
is satisfied, we allow the best candidate key to be the 
current key even if that candidate key is in the tabu 
list. 
     The concept of aspiration criterion is important in 
tabu search to avoid getting stuck in local minima. 
The conjecture is that the aspiration criterion gives 
some indication about whether the algorithm is 
trapped in local minima or not. Careful thought must 
be given while selecting the aspiration criterion. In 
our case, if limit on the aspiration criterion is too 
small, then the algorithm may unnecessarily change 
a correct direction. Large limit on aspiration 
criterion makes the algorithm to stay in local minima 
for longer than necessary duration. In the search 
space of DES keys, there are large number of local 
minima. Also, global minimum is due to a discrete 
jump. Thus, a smaller than usual limit on aspiration 
criterion is advisable. 
 
    Similar sets of experiments were performed with 
tabu search as with GA and AGA. In this case, tabu 
list size was fixed at 1000 and the limit on aspiration 
criterion was 5, i.e. if we did not get a better solution 
in five consecutive generations, aspiration criterion 
is said to be satisfied. The fitness function used in 
this case is Unigram.  
      
5.3 PSO 
 
     PSO and group PSO were used for cryptanalysis 
of 6-round DES. We summarize the results of these 
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experiments in this subsection. The fitness function 
used was unigram. The fitness value started from 
about 0.5 and come down to 0.3 in about 3250 
generations. Also, we notice a rapid decrease in the 
fitness function at the beginning and the rate of 
decrease decreases as we run the experiments for 
longer period. This is because as the fitness value 
decreases, it becomes more and more difficult to 
find a better key. This is the problem with all the 
algorithms. PSO, in spite of being so simple, has 
performed better than other methods. 
      In case of PSO, search space was divided into 
100 swarms. At the beginning, it was ensured that 
swarms start at different positions. But it is very 
difficult to ensure that trajectories of the swarms do 
not intersect during the execution. The fitness value 
has started from above 0.55 and has come down to 
0.22. Number of function evaluations is also quite 
high in this case. Thus, PSO is a very promising 
approach for solving the problems of cryptanalysis 
of DES and any discrete optimisation problem in 
general. However, this is a fairly new technique and 
there is lot of scope for research in this area. One of 
the ideas suggested in this paper, is the exploration 
of group PSO in a parallel execution environment. 
     The group PSO as compared to GA and AGA 
performs better in terms of percentage of successful 
attacks, overall execution time, and need to tune 
various parameters of the algorithm leading to 
simple program development effort. 
 

6 CONCLUSIONS 

 
   Though the keys of 16-bit DES were retrieved in 

all experiments using different heuristics, tabu 

search and particle swarm optimisation performed 

better than the other methods in terms of execution 

time.                      

 
     The paper has demonstrated the efficacy of 
evolutionary computation principles in cryptanalysis 
studies. We have considered DES and one of its 
simplified variants, along with SDES for our 
experiments. Initially it was noticed that 
cryptanalysis of DES was hard using genetic 
algorithm, adaptive genetic algorithm, particle 
swarm optimisation, and tabu search technique. 
However, the attack was successful for SDES and 
simplified version of DES with 6 rounds,16 bit key 
and without S-boxes. For a comparison of the results 
obtained from the evolutionary techniques, we have 
considered results from Simulated Annealing 
technique as the benchmark. We notice that 
evolutionary techniques yield better results. These 
comparison details are not presented here due to 
space constraints. This demonstrates that it is 

possible to cryptanalyse block ciphers using 
evolutionary techniques. Currently we are 
experimenting with 32 bit and 48 bit key DES with 
more rounds and S-boxes. We believe that such 
studies will certainly establish the applicability of 
evolutionary computation techniques to 
cryptanalysis studies. 
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