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Abstract: In this paper we approach the problem of Topographic Mapping. We introduce a new algorithm based 
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1 The Problem 
The impossibility to supply efficient visualizations 
of the relationships between records and variables in 
a dataset is one of the major limits in the analysis of 
multidimensional data. 
   More in general, it is very useful an instrument 
able to compress the information contained in a data 
set from a K-dimensional space to a P-dimensional 
space (with P<<K and P=2 or P=3 in the case in 
which the objective is the graphic representation). 
   The problem that we want to approach is as 
follows: given a measure of the relationships 
existing between elements of a given space, we 
want to project these elements in a different space 
with less dimensions and minimizing the distortion 
of the original relationships.  
   This is a problem similar to the one solved by the 
Self Organizing Map (SOM) [9]. The important 
difference is in the approach: in the case of SOM we 
can speak of vector projection, that is, all the 
information in the process of projection are not 
considered for every step, that is, the positions of 
the other points, but a synthesis of this information, 
that is, the codebooks of the cells of the SOM. On 
the contrary, the proposed model in the paper 
considered implements the one that we might define 
as coordinated projection, which means, the 
positioning of the original points in a sub-space 
considering the concurrent presence of all the 
others. A problem of this kind is defined as 
“Topographic Mapping” in literature (TM) and there 

are several algorithms to treat it. The objective is to 
preserve the characteristics of the “geometrical 
structure” of data in a representation with reduced 
dimensionality. 
   The concept of “geometrical structure” is 
connected to the concept of distance. Therefore, to 
preserve the geometric structure of the original data 
means that, after applying the algorithm of mapping, 
the elements that used to be “close” in the original 
space find themselves to be close in the sub-space 
too. It means also those distant elements in the 
original space turn out to be still separated in the 
final destination space. 
   In the case in which the preservation of the 
specific metric  the original space is important, the 
objective consists in aiming at the isometry between 
the original space and the resulting map.  
   We can also consider to be only relevant the 
conservation of the topological order between the 
two spaces; in this case, we tend only to keep the 
order of the distances between the points between 
the original and the final space. 
   In the case in which the objective of the analysis is 
the preservation of the metric of the original 
distances, the problem can be formalized as follows: 
given a square matrix A of dimension N, 
symmetrical and with null diagonal, we want to 
position in a P-dimensional space, generally with 
P<K, N points so that we minimize an error function 
E that takes into account the dissimilarity between 
the matrix A and the matrix of distances between the 
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N points projected in the P-dimensional subspace.      
  The problem can be presented in the following 
form: given N points  { }NxxX ,....,1= , or their 
distances in a K-dimensional space, find the 
distribution of these points { }NyyY ,....,1=  in a P-
dimensional space with P<K, so that we minimize 
the “difference” between the original distances and 
those in the projected space. 
  If we define: 
• the matrix of the map distances 

),(:)( ji
P

ij yyDMdYMd = , 
• the matrix of the original distances 

),(:)( ji
K

ij xxDRdXRd = , 
and a measure of the dissimilarity between the two 
matrices ),( RdMdEE = , 
then the target function consists in finding a 
configuration of points { }NyyY ′′=′ ,....,1 , such that: 

[ ]))(),((min* XRdYMdEE ′=                          (1) 
   This general problem generates an ample 
spectrum of sub-problems depending on the choices 
made for the distance D and on the target function 
E. 
   For the distance D, in particular, we can 
distinguish metric and non-metric distances (those 
that do not satisfy the triangular inequality). 
  More choices are possible for the target function 
too, for example:  
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   In the case of the target function (2a), the estimate 
of the error in the data projection on the map 
considers all the distances equally, in the second 
case (2b), instead, the distances among closer points 
“weigh” more in the evaluation of the quality of a 
solution. The equation (2b) is the notorious ‘stress’ 
equation used in many algorithms that deals with 
topographic mapping [13]. 
   This problem can be still further classified as 
linear and non linear mapping according to the 
relationship existing between the coordinates of the 
original and projected points: the linear mapping is a 
mapping from an original space to a final space 
which maintains a linear relation between the axes 
of the   original space and the axes of the final 
space. 
   The more common algorithms of linear 
projections are the PCA (Principal Component 
Analysis) [8] and the ICA (Independent Component 

Analysis) [4]; the former requires a gaussian 
distribution of data, while the latter does not require 
any specific distribution. 
   If the relationships between variables are non 
linear, the methods described above are not able to 
preserve, with adequate accuracy, the geometrical 
structure of the original space. In the compression, 
in fact, much important information is lost. It is 
evident, then, the necessity of both eliminating the 
requirement of linearity between axes and of finding 
a non linear mapping between the original and final 
space capable of preserving as much as possible the 
relationships between variables. 
 
 
2   The PST Algorithm 
To face the problem of the non-linear mapping, we 
choose an approach of an evolutionary kind, named 
as “Pick and Squash Tracking” (PST). 
   The novelty of many approaches to the 
Topographic Mapping (TM) is more in the cost 
function minimized for the projection, than in the 
algorithms used to approach the problem. 
   In terms of the optimization theory, the problem 
can be formalized, in general, as a problem of non-
linear minimization; our approach does not assume 
the use of a particular measure of distance or of an 
error function. Our approach aims to underline the 
efficiency of a specific evolutionary algorithm in 
solving the problem on minimization. This ability is 
characterized by the known properties of 
evolutionary approach:  

a. Parallel capability of the process; 
b. Flexibility in the choice of the function to be 
minimized; 
c. Absence of bounds; 
d. Capability of avoiding local minima; 
e. Efficiency in the optimization of multiple 
target functions [7,11]. 

We evaluate now the geometric and the algorithmic 
complexity of this problem and how to approach it 
with PST. 
   A possible way to evaluate the geometric 
complexity of this problem consists in making the 
hypothesis of the existence of an exact solution and, 
then, evaluates the complexity of the constructive 
algorithm needed to find it. We define: 

a. state of the map, S, a configuration of points 
in the projected space that can be rotated and/or 
translated; 
b. tolerance angle, α , the possible positions on 
the circumference that fix the distance between 
the point Pi and the point Pi+1 to be positioned. 

If we have two points to project, the problem is 
trivial: every point along a circumference with 

Proceedings of the 7th WSEAS International Conference on Evolutionary Computing, Cavtat, Croatia, June 12-14, 2006 (pp12-19)



radius equal to the distance to the two points is a 
correct solution.  
   When the number of point is bigger than two the 
complexity grows dramatically. We find that the 
number of possible states S, considering the 
distances among N points, is equal to: 

      2 ;MS M Nα= = −  
    If we now define T the number of tests needed to 
verify the distances among N points in a state, then, 
we have: 

( 1)
2

M MT ⋅ +
=                                               (3) 

   The equation is the sum of the number of 
comparison between the distances that is necessary 
to control in order to verify the consistency of every 
possible state of the map [5]. For example, for 4 
points and a tolerance angle of 360°, the possible 
states of the map are 3602 and in order to verify 
each of these it is necessary to make [2·(2+1)]/2   
comparisons. The number of possible tests for all 
the states of the network is then Q= S·T 
   The PST is an evolutionary algorithm based on the 
algorithm GenD [1]. The space of projection is 
discretised, with a number of intervals sufficient to 
reach the optimal approximation to the solution. An 
analysis of the worst case shows that the error 
introduced by the discretisation for every point, with 
respect to the optimal solution in the continuum, is 
given by: 
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   Where  lk is the dimension along the k axis of the 
discrete cell (Figure 1) (Lk dimension of the space of 
projection along the k axis divided by the number of 
elements of discretisation). 

L1

l1

L1

l1

 

l2

l1

erril2

l1

erri

l1

erri

 

Figure 1 

   
 The total error for the projection of N points is 
given by: 
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   Thus, it is possible to choose a discrete interval 
such that the error introduced by it is negligible.  
   As far as the choice of the dimension of the 
projected space is concerned it is sufficient to 
guarantee that in the destination space it can be 
inscribed an iperspheroid of diameter equal to the 

maximum distance present in the original data; we 
choose, for practical reasons, an hypercube of side 
equal to the maximum distance found in the data 
(MaxDim).   
   The stated problem has, then, an algorithmic 
complexity equal to the dispositions n over k, in 
other words, the ordered k-uple that can be built 
utilizing (without repetition) k among the n given 
objects, where k is the number of points to be placed 
on the map and n are the possible discrete cells 
where to place the points. Therefore, in order to 
obtain the projection of 10 points from a 3-
dimensional space to a 2-dimensional space, 
quantized in squares of unitary side and with a 
quantization error of one thousandth of unity, we 
have: 
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   The total number of elements, cells, that make up 

the discretised space is  
l
1

=1.5*108. 

   The number of possible states, that is, of possible 
configurations of N points in the discrete space 
composed by 1/l elements, is then: 
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with 1.5*108 cells, from which the possible 
solutions are the dispositions of 10 objects over 
1.5*108 cells, that is 5.7*1081 possible states. Once 
coded in a discrete way the space of solutions it is, 
now, possible to define the coding individuals of the 
evolutionary algorithm (Figure 4): 

a. Every individual encodes a complete solution 
of the problem, i.e. a set of K coordinates of the 
points on the projected space; 
b. Every individual is constituted by P genomes, 
one for each dimension, each of length k; 
c. The alphabet of each gene is equal and goes 
from 0 to MaxDim. 

   It is important to highlight that the operators of the 
evolutionary algorithm act independently in each 
dimension, because operations on genes involving 
different dimensions are not allowed. 
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Figure 2:  Individual coding 

 
   The evolutionary algorithm that we have chosen in 
order to approach the TM is GenD [1]. 
   This choice is dictated by the particular efficiency 
shown by this algorithm in approaching problems 
with complex space of solutions. 
   The advantage of GenD in approaching complex 
optimization problems is due to one to its structural 
properties: the link of feedback between the average 
of the fitness of the population and the criteria of 
selection of the individuals that participate in the 
crossover [1]. 
The algorithm PST enriches GenD in two key 
points:  

a. The creation of a new kind of crossover 
defined constructive crossover, in addition to the 
standard crossover already known ; 
b. The creation of a new operator of 
optimization, called look around, is linked to the 
necessity of a more energetic exploitation of the 
local information. 

Experimental results show that, thanks to the 
introduction of the operator “look around” and of 
the constructive crossover, the PST increases the 
velocity of convergence, and a bigger independence 
from the initialization conditions. 
   The constructive crossover is based on a 
construction of the kind greedy as a function of the 
local error. 
   We define “local error” of a gene the sum of the 
errors, calculated as differences of the original 
distances of each point from the distances of each 
projected point.  
   In the constructive crossover the new genome is 
built choosing from two “parents” the genes that 
locally correspond to a point with less local error 
(Figure 3). 
 

 
Figure 3 

 

   The operator “look around” is an operator that 
implements a local search: it tries to explore in 8 
directions, according to a random gradient, the new 
possible positions for each point (Figure 4). When a 
certain position increases the global fitness, then 
that position is kept. It is necessary to highlight that 
the already mentioned independence from the initial 
conditions is linked to this operator which allows, 
on the one side, to alter the boundaries defined by 
the initialization of the points and, on the other side, 
to modify the limits from 0 to MaxDim, making 
then the alphabet dynamic and virtually infinite. 
 

 
 

Figure 4: The potential displacement  
of the algorithm look around 

 
 
Constructive Crossover: 

1) Random choice of the first gene from one of 
the two parents; 
2) Choice of one of the genes left (i); 
3) Evaluation of the local error of the gene of the 
father with respect to the new genome (Eij(p)); 
4) Evaluation of the local error of the gene of the 
mother with respect to the new genome ( Eij(m)); 
5) If Eij(p)<Eij(m) copy the gene from the 
father else copy the gene of the mother; 
6) If it has not used all the genes go to point 2) 

 
Operator “look-around” 
Repeat n times: 

1) Random choice of one of the points;  
2) Random choice of one of the 8 possible 
displacements; 
3) Evaluation of the fitness of the new solution; 
4) If the fitness is better than the previous one 
use the new genome. 

 
 
3     Experimentations 
Given the ample variability of objectives that we 
can set in approaching a problem of TM, it is useful 
to analyze the practical usage of these algorithms in 
order to allow, at least partially, a comparative 
analysis. 
   One of the most common usages of these 
algorithms is the compression of the dimension of 
the data in order to allow visualization on a 2-
dimensional plan. In order to evaluate the 
performances of the PST, we have chosen a set of 
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problems of 2-dimensional projection and we have 
compared the results of the PST with those of some 
algorithms used traditionally to approach this kind 
of problems. 
   For each problem we have done ten experiments 
using, as criteria of evaluation, the measure  

1

1 ;   

2where    
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   In the results we report:  

a. The result of the best experiment, measure of 
the ability of solution of the algorithm. 
b. The mean and the variance of the ten 
experiments, measure of the robustness of the 
algorithm. 

   The following datasets have been chosen as 
problems for the benchmark:  
• ItalianCity10 – The highway distances of 10 
Italian cities. 
• Uk23 –  The highway distances of 23 English 
cities. 
• Usa12 – The air distance route among 12 USA 
cities.  
• Food – A small database of the food 
consumption of European countries. 
• Gang – An example database generated from 
the characters of the film “West Side Story”[12]. 
• Molecola25 – A problem of molecular structure 
[10]. 
• Iris150 – The famous database on the of 
Fischer’s Iris [6].  

 
   The algorithms with which we compared the PST 
are: 
• The Principal Component Analysis (PCA) [8]: 
algorithm of linear projection. The first two 
principal components have been used as 
projection axis. The comparison with the PCA has 
been done to highlight the different compression 
capability of the original information by a linear 
projection with respect to a non-linear.  
• Sammon's mapping [13]: this algorithm tends to 
guarantee the preservation of topology.  Sammon 
defines the error function: 
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where k
jid ,  and p

jid ,  are the distances between the i-
th and the j-th vector, respectively in the k-
dimensional space of immersion and the p 
dimensional space of projection. Given the error 

function, the optimal projection is calculated using 
the decreasing gradient algorithm. The only 
difference with respect to the objective function 
used by PST is a scaling factor that makes fully 
comparable the results obtained with the two 
different approaches. 
• Direct Search [7]: is a method for solving the 
problem of optimization that does not require any 
information about the gradient of the objective 
function. A direct search algorithm analyses a set 
of solutions in the neighborhood of the current 
solutions, trying to find a solution with objective 
function better than the current one. In terms of 
flexibility of the objective function it is, then, 
comparable to PST and for this reason a 
comparison of the results is significant. 

 
In the first instance we show the comparison among 
different algorithms (Table 1), showing the best 
result obtained in each of the test datasets: 
 

BEST Ds Pst Pca Sammon

UK 23 0.964 0.964 * 0.9582 
USA 12 0.987 0.987 * 0.9809 
Italy 10 0.934 0.974 * 0.9662 
Food 9 0.877 0.879 0.818 0.854 
Food 16 0.877 0.877 0.813 0.8624 
Gang 14 0.841 0.842 0.792 0.8036 
Gang 27 0.809 0.814 0.741 0.7831 
Molecola 25 0.94 0.982 * 0.9809 
Iris 150 0.339 0.928 0.902 0.9247 

Table 1:  Best results reached by each algorithm in 10 tests (* 
indicates the   impossibility of the algorithm analyzed to solve 
the problem being available only the matrix of the distances and 
not the original points) 

 
   The significant performances of the PST is shown 
by the comparison that highlights the average result 
that each algorithm has obtained in each of the test 
(Table 2): 
 

Average Ds Pst Pca Sammon

UK 23 0.955 0.964 * 0.9495 
USA 12 0.975 0.987 * 0.9707 
Italy 10 0.868 0.973 * 0.9556 
Food 9 0.867 0.879 0.818 0.8401 
Food 16 0.874 0.877 0.813 0.8524 
Gang 14 0.836 0.842 0.792 0.7982 
Gang 27 0.796 0.814 0.741 0.7787 
Molecola 25 0.926 0.98 * 0.9707 
Iris 150 0.285 0.928 0.902 0.9175 

 
Table 2 Average results of each algorithm in 10 tests. 

 

Proceedings of the 7th WSEAS International Conference on Evolutionary Computing, Cavtat, Croatia, June 12-14, 2006 (pp12-19)



Significativity of mean difference is reported in 
Table 3. 
 
Pstp DS PCA Sammon 

 M. Diff Pvalue M. Diff Pvalue M. Diff Pvalue

Uk23 0.01 0.071     0.007 0 

Usa12 0.012 0.016     0.017 0 

Ita10 0.105 0     0.018 0 

Food9 0.012 0.016 0.061 0 0.039 0 

Food16 0.003 0.001 0.064 0 0.024 0 

Gang14 0.006 0.057 0.05 0 0.044 0 

Gang27 0.018 0 0.072 0 0.035 0 

Mol25 0.055 0     0.01 0.002 

Iris150 0.643 0 0.026 0 0.01 0 
  
Table 3: Significativity of mean differences between PST 
algorithm and other algorithms. MeanDiff is the difference 
between means of PST results and other algorithm results; 
Pvalue, is the p-value associated with the t-statistic: 

mn
s

yxT
11

+

−
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where s is the pooled sample standard deviation and n and m are 
the numbers of observations in the x and y samples. 
 
 
3.1 PST versus PCA 
The comparison with the PCA brings out two 
particular aspects:  

a. On the one side, as we expected from the bigger 
freedom in the projection on the map, the PST 
shows a net improvement in the measure of the 
fitness with respect to PCA. In fact, the PST, as 
shown in figures 5 and 6 for the problem FOOD, 
allows a better compression of the useful 
information;  
b. On the other side, the PCA is not applicable 
starting from a simple matrix of the distances.  

 

PCA 
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Central Europe Central Europe 

Mediterranean Mediterranean 

Ireland 
North Europe 

Figure 5 

 

PST  
(Variables Space) 

Central Europe Central Europe 

Mediterranean Mediterranean 

North Europe North Europe 
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Figure 6 
 
 

3.2 PST versus Sammon 
The Sammon Mapping uses a functional cost very 
similar to the one used by PST. The results show 
that on all the analyzed datasets, PST obtains the 
best performances, both from the point of view of 
result and with respect to the robustness (in two 
cases, indeed, the variance of the results of the 
Sammon mapping is different from zero). 
 

 
Figure 7a 

 
 

Figure 7b 
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Figure 7a and  7b report the comparison on the 
dataset gang27, using the Sammon mapping and the 
PST; the best results from the two systems are 
reported. From the Shepard diagram, scatter 
diagram which reports on the x axis the distances in 
the original space and on the y axis the distances of 
the mapping, we see that the PST as clearly a better 
performance on the short distances.  
 
3.3 PST versus Direct Search 
In the case of the Direct Search, the comparison is 
linked to the analyses of efficiency in the solution of 
the problem of optimization. 
   The results are interesting and highlight that on 10 
tests on each data set the best results are sometimes 
comparable (even though PST shows better 
performances on many datasets, in particular on the 
problem of the 150 Iris). 
   In addition, the analyses of the average of the 
results shows a difference even more marked in 
favor of PST. 
   In conclusion, the choice of an evolutionary 
algorithm, in particular of GenD, is a more efficient 
choice (better overall results), more robust (better 
repeated results) and more powerful (better repeated 
results obtained on very different datasets) than the 
Direct Search.    
   An additional edge element of PST, with respect 
to the two algorithms discussed (also with respect to 
others, like CCA and the CDA, which have not been 
taken into consideration because they optimize 
different cost function), is the high flexibility in the 
choice of typology of distance used for the mapping 
and in the cost function. PST shares this advantage 
with the Direct Search. 
   For instance, if the optimizations just carried out 
should be repeated with a cost function that does not 
optimize the metric distance but only the topology 
of the points (the order in the neighborhood of each 
point from all the others), then, the PST would not 
imply any modification, allowing then a projection 
composed exclusively of variables of ordinal kind. 
 
3.4 PST On molecule conformation problem 
In this task we use PST to solve a Molecule 
Conformation Problem: the target is to arrange the 
N atoms of a molecule in a way that the distances 
between specified pairs of atoms match 
experimental data. We compare PST performances 
with an algorithm for minimization of an 
unconstrained multivariable function (fminunc) 
offered by Matlab Optimization Toolbox  [10], this 
algorithm is a subspace trust region method and is 
based on the interior-reflective Newton method 
described in [2],[3]. Each iteration involves the 
approximate solution of a large linear system using 

the method of preconditioned conjugate gradients 
(PCG).  
   This task is different from the formers due to the 
lack of some of the distances, not all the distances 
among atoms were available. All the fitness and 
performance measures are calculated on the 
available values. 
  

Molecole Fminunc 2D PST 2D PST 3D 
MeanAbsErr 0.0173 0.009374 0.003262 
MeanPercErr 0.0778 0.018 0.007 
  

Table 4 Results of molecule conformation problem 
 
   In table 4 has been reported the performances of 
both the systems: the fitness criteria of PST 
(MeanPercErr) and  the mean of 

222
][ ijji Rdyy −−  used as error criteria by the 

matlab function. 
   In figure 8 we can see the differences on 
performance in a graphic way; using both measures 
performance of PST are clearly better. 
   We have also done a reconstruction of the 
problem in the original 3D space using PST getting 
an error very low. 
 

Molecule Conformation Problem

0
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Figure 8 Bar plot of results on Molecule conformation problem 
 
 
4  Conclusions and Future 
Perspectives 
The approach shown to tackle the general problem 
of Topographic Mapping, presents two important 
elements: on the one side, it emphasizes the 
advantage to tackle the problem from the point of 
view of optimization, on the other side, it suggests 
the usage of a particularly efficient evolutionary 
algorithm to solve it.  
   The experimental results show, in empirical way, 
that the space of solutions of the problem can be 
particularly complex and depends strongly on the 
data and on the function with which we measure the 
distortion of the original distances from those on the 
map. For this reason, the usage of an algorithm, that 
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has excellent capacity to tackle different 
optimization problems and is not bound to specific 
properties of the problem itself, becomes 
fundamental. 
   GenD, the evolutionary algorithm used, shows the 
characteristic advantages of the algorithm of its 
class, elevated robustness on very different 
problems and, as underlined, allows hybridization 
that increase in a sensible way the velocity of 
convergence to the solution, traditional limit of the 
evolutionary algorithm. 
   The very positive results of the reported 
experiments suggest that the usage of the 
evolutionary algorithms in the field of Topographic 
mapping is a road to follow extending the analysis 
to other kind of distances and objective functions. 
   We have not done benchmark versus Isomap[14] 
and CCA/CDA that can be considered the latest 
algorithm on the topic because they are mostly 
involved in measuring the distances on the “right” 
manifold. These can be seen as a kind of 
preprocessing followed by a “classical” MDS 
algorithm; so PST process can, for example, replace 
classical MDS after the “on graph” distance 
measure carried out in Isomap. A possible 
improvement of PST would be to find a fitness 
function able to gain similar results to Isomap and 
CCA without the need of  a manifold structure 
identification process; to this task we will devote 
our future work on PST. 
   Furthermore, another necessary element to 
complete the approach discussed is the development 
of a method to use the projection generated on new 
data, in other words, on an algorithm capable of 
projecting new values as a function of the solution 
produced by GenD and, thus, to allow, for example, 
the usage of this instrument also as a step of pre-
processing of data for the compression of the 
cardinality of the input of the systems of 
classification and functional approximation.   
   In the case of very big set of data, of the order of 
thousands of records, this approach, as others 
discussing in literature, has problems in terms of 
computation time and difficulty of convergence; in 
this sense it is possible to tackle the problem using 
the SOM, for the projection of the entire dataset and 
recover part of the information that the SOM is not 
able to produce, applying the PST on the codebooks 
generated by the SOM. In this case, it is possible to 
visualize on a plan not the relation of each single 
element but the relations of groups of elements 
which belong to the same cell of the SOM.  
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