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Abstract: As more biological data become available, the need for specific tools to analyze the data is more pressing.
The methods for protein comparisons, which can asses if two given proteins are similar or not, are amongst the most
important tools for analyzing biological data. These methods are very useful when a new protein is discovered,
because finding similar proteins about which something is already known can help in evaluating the function
and structure of the new protein. The classical methods for finding similarities at the sequence level involve a
substitution matrix and a sequence alignment algorithm for aligning the two sequences. The alignment algorithm
can be global - when the sequences are aligned from one end to the other - and local - when only isolated regions
of the two proteins are aligned. In this paper, we present a new method to compute the local similarity score using
a lossless compression algorithm.
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1 Introduction

The most reliable way to determine the structure and
the function of a protein is by experimental methods
such as x-ray crystallography and nuclear magnetic
resonance (NMR). But since it is more easier to de-
termine the sequence of a protein than it is to exper-
imentally determine its structure and function, there
is a strong motivation for the development of tools
that are able to determine the similarity of two pro-
teins at the sequence level. In that case, for a newly
discovered protein, the function and the structure can
be evaluated by finding similar proteins for which the
function and the structure are already known.

Protein sequences accumulated lots of insertions,
deletions and substitutions during the evolutional pro-
cess and for deciding if two proteins are similar or
not, one first tries to find an alignment between them.
Generally, to produce an alignment between two se-
quences, a dynamic programming algorithm is used
[1] [2][3]. The alignment algorithm can produce
a global alignment, that is the two sequences are
aligned from one end to the other [1][2] or it can
produce a local alignment when only subsequences
of the two proteins are aligned [3]. Despite the fact
that these algorithms produce the optimal alignment
between two sequences, they cannot be used in ev-
eryday life for searching protein databases because
of the time complexity. To overcome this problem,

heuristic algorithms for pairwise sequence compar-
ison [4][5][6][7] and multiple sequence comparison
were developed[8].

All of these algorithms make use of a key com-
ponent, that is a substitution matrix, to produce the
alignment of the two sequences and the associated
alignment score. Generally, the most likely biological
alignment has to have the greatest alignment score and
then the scoring matrix has to reflect the evolutionary
history, three dimensional structures and other prop-
erties that constrain the evolution of the primer struc-
ture of proteins. Among the most widely used substi-
tution matrices are the PAM family[9][10] and BLO-
SUM matrices [11]. It has been showed that in the
context of local ungapped alignments, the elements of
every such substitution matrix are log odds ratios of
the probability of the two amino acids being related
and of the probability of the two amino acids being
unrelated [12][13].

In [15], a compression algorithm for proteome se-
quences was presented. This algorithm makes also
use of a substitution matrix which is adaptively built
for every proteome sequence that is to be compressed.
Generally, when a compression scheme succeeds to
compress a given sequence by making use of a sta-
tistical model, it means that the model was relevant
for that sequence. The matrix in this algorithm is col-
lected from the regions where the statistics will de-
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crease the description length with respect to the raw
model. A measure of the relatedness of two pro-
teomes was defined as the difference between the av-
erage codelengths obtained when the first proteome is
encoded using only the statistics of its own sequence
and the average codelength obtained when it is con-
ditionally encoded knowing the other proteome. The
fact that plausible biological phylogenetic trees can be
built using this measure of relatedness for the full pro-
teome sequences, made us raise the question if this
measure can also be used to compare different pairs
of proteins.

The rest of the paper is organized as follows. In
the next section, some recent observations concerning
the compositional adjustment of substitution matrices
are presented [14]. In the third section, some modi-
fications of the compression algorithm from [15] are
presented so that the algorithm is suited for compari-
son of two proteins. In the forth section, the results ob-
tained when comparing different pairs of proteins us-
ing compositional adjusted matrices and our method
are presented. Finally, some conclusions are drawn.

2 Compositional adjustment of sub-
stitution matrices

One of the long standing problems concerning the
widely used substitution matrices, PAM and BLO-
SUM, is that the substitution score is of the form of
log-odds ratio of the target frequencies and of the
background frequencies derived from accurate align-
ments of closely related proteins. These matrices are
then appropriate for comparison of protein sequences
for which the amino acid composition is close to the
background frequencies used to construct them. Un-
fortunately, the standard substitution matrices are also
used when comparing protein sequences with very
different background frequencies. To overcome this
problem, a method for adjusting the implicit target
frequencies of the substitution matrix used for com-
parison is presented in [14].

Given a set of target frequencies qij that sum to
1, where qij is the probability of observing any pair of
amino acids, and two sets of background frequencies
pi and p′j , defined as the marginal sums of qij :

pi =
∑

j

qij ;

p′j =
∑

i

qij , (1)

a substitution matrix defined as

sij =
1
λ

ln(
qij

pip′j
) (2)

is called valid in the context of pi and p′j , where λ is a
scaling factor. Although PAM and BLOSUM matrices
are valid in the context of their background frequen-
cies, these matrices are used to compare sequences
with different background frequencies Pi and P ′

j . If
the expected score

∑
ij PiP

′
jsij remains negative, the

substitution matrix can be written in the form of log-
odds ratios:

sij =
1
Λ

ln[
Zij

PiP ′
j

] (3)

Then, in the new background context, sij remains a
log-odds matrix with a new set of target frequencies
Zij and a new scale factor Λ. The problem is that Pi

and P ′
j are not the marginal probabilities of Zij and

then sij is not valid in the context of Pi and P ′
j .

To adjust any given log-odds matrix to a nonstan-
dard context, they seek for a new set of target frequen-
cies Qij that is as close as possible to the original set
of target frequencies qij and satisfies the consistency
conditions:

Pi =
∑

j

Qij

P ′
j =

∑

i

Qij (4)

For finding the new target frequencies Qij the
Kullback-Leibler distance is used:

D(Q, q) =
∑

ij

Qij ln(
Qij

qij
) (5)

Compositional adjusted matrices have shown an
improved performance in detecting biological appro-
priate sequences.

3 A compression algorithm for mea-
suring the local similarity of two
proteins

In a recent work [15], we presented a lossless com-
pression algorithm for compression of proteome se-
quences, i.e. the ensemble of all proteins in a given
organism. The algorithm can also be used for con-
ditional coding, i.e. compressing a proteome given
another proteome. Using the compressibility results,
we defined a measure of ”relatedness” of the two pro-
teomes and using this measure we constructed a phy-
logenetic tree for the proteomes of several organisms.
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The fact that biological plausible phylogenetic trees
can be built using this measure leads to the conclu-
sion that our compression algorithm manages to cap-
ture the biological meaningful features of the data.

In this paper, we investigate if our method of
defining ”relatedness” at a macro scale can also be
used at a micro scale, i.e to compute the ”relatedness”
of two proteins in different organisms and compare
the results obtained with our method to those obtained
when using compositional adjusted matrices.

The algorithm introduced in [15] is a two pass
algorithm. In the first pass, the proteome se-
quence which is to be compressed is split into non-
overlapping blocks and for each block a regressor
block is found in the already seen sequence. If the
proteome is conditionally encoded, the regressor may
be found in the other proteome. The block and the
regressor block have the same length and for each
pair of blocks the number of matches is computed,
i.e. the number of positions in which the same amino
acid is found. A substitution frequency matrix is col-
lected from the pairs of blocks for which the number
of matches is greater than a given threshold. The pair
of amino acids that have the same rank specifies the
row and the column for the cell value that is updated
each time. The amino acids are numbered in alphabet-
ical order from one to twenty and the amino acid in the
regressor block specifies the row in the matrix and the
amino acid in the current block specifies the column.
For each conditional distribution obtained from each
row of the matrix, a Huffman code was built. In the
second step, a given block can be encoded using the
Huffman codes designed in the first pass, if the num-
ber of matches is greater than the specified threshold,
or using an adaptive first order Markov model and the
arithmetic encoding, if the number of matches is less
than the threshold. In order for the decoder to be able
to decode the message received, the Huffman codes
have to be sent as a prefix of the message. In [15],
we have also presented a version where a fixed sub-
stitution matrix is used. Finally, the ”relatedness” of
two organisms, based on the sequence of their pro-
teomes, was defined as the difference between the
average codelength obtained when a proteome is en-
coded based on the statistics observed only within its
sequence and the average codelength obtained when
the proteome is conditionally encoded based on the
other proteome.

For the experiment in this paper, we used a
slightly different version of the algorithm presented
in [15]. Because in this experiment we compare only
pairs of proteins in different organisms, the substitu-
tion matrix is not collected for each pair of proteins
because there is not enough statistics at this level and
only the cost of transmitting the matrix may be greater

than the cost of encoding the whole sequence of amino
acids. Then, for each pair of organisms, a substitution
frequency matrix is collected at the proteome level
and the associated Huffman codes are used to compute
the ”relatedness” of proteins from that organisms.

For computing the ”relatedness” of two proteins,
the same idea as in [15] is used. For a given pair of
proteins, one is considered to be encoded using only
the statistics of its own sequence and conditioned to
the other protein and then the relatedness is the differ-
ence between the two average codelengths obtained.
The protein is also split in non-overlapping blocks of
a certain length. In the first case, the regressor block
is searched only in the already seen sequence and in
the second case, the regressor is searched also in the
other protein. The pair of blocks having the num-
ber of matches greater than a fixed threshold are en-
coded conditional on their regressor using the Huff-
man codes designed at the proteome level, while the
blocks with less number of matches than the threshold
are encoded in clear using log2(20) bits/amino acid.
Using this method to encode the amino acids in the
blocks with number of matches less than the thresh-
old has an interesting interpretation when computing
the ”relatedness” of the two proteins.

Let X = x1, . . . , xNx be the protein which
is to be encoded and Y = y1, . . . , yNy the
conditioning protein. For each block xk =
x(i−1)k+1, . . . , x(i−1)k+L, where L is the length of
the block, a regressor block is found rk

p = r1, . . . , rL

where depending on the value of p we have two cases:
r1, . . . , rL = xt, . . . , xt+L−1 if p = 1, which means
that the regressor is found before the current block
in the protein sequence which is to be encoded, or
r1, . . . , rL = yt, . . . , yt+L−1 if p = 2, which means
that the regressor is found in the other protein. If
p = 1, then t ≤ (i − 2)k + L and if p = 2, then
t ≤ Ny. The ”relatedness” of the two proteins is com-
puted the same way as in [15]:

R(X, Y ) = L(X) − L(X|Y ) (6)

where L(X) is the average codelength obtained when
the protein X is encoded without knowing the protein
Y and L(X|Y ) is the average codelength obtained
when the protein X is encoded conditionally on pro-
tein Y .

Let Nb = �Nx
L � be the number of non-

overlapping blocks in the protein X , then (6) be-
comes:

R(X, Y ) =
Nb∑

k=1

[L(xk|rk
1) − L(xk|rk

p)] =
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=
Nb1∑

i=1

[L(xi|ri
1) − L(xi|ri

p)] +

+
Nb2∑

j=1

[L(xj |rj
1) − L(xj |rj

2)] =

=
Nb2∑

j=1

[L(xj |rj
1) − L(xj |rj

2)] (7)

where Nb1 is the number of blocks for which the num-
ber of matches is less then the fixed threshold and Nb2

is the number of blocks for which at least in the condi-
tional case the number of matches is greater than the
fixed threshold.

We can further write (7) as:

R(X, Y ) =
Nb21∑

i=1

[L log2(20) − L(xi|ri
2)] +

+
Nb22∑

j=1

[L(xi|ri
1) − L(xi|ri

2)] (8)

where Nb21 is the number of blocks for which
only in the conditional case the number of matches
exceeds the fixed threshold and Nb22 is the number of
blocks for which in both cases the number of matches
is greater than the fixed threshold. It turns out that our
method to define the relatedness of two proteins is in
fact a measure of the local similarities of the two pro-
teins because the regions where the proteins are not
similar are discarded.

4 Experimental results

To test the ability of our method in measuring the local
similarities of two proteins, we used the same data set
as the one in [14]. This data set is formed of three sets
of pair of proteins from organisms with very biased
AT or GC genomes. The three pairs of organisms con-
sidered are: (i)Clostridium tetani (AT-rich) and My-
cobacterium tuberculosis (GC-rich) with contrasting
strong biases; (ii) Bacillus subtilis and Lactococcus
lactis both with relatively unbiased genomes; and (iii)
Mycobacterium tuberculosis and Streptomyces coeli-
color with strong biases in the same GC direction. For
each pair of organisms, two sets of pairs of proteins
were considered, one for positive control which con-
tains only orthologous pairs of proteins and one for
negative control which contains all possible pairs of
proteins in the positive control set excluding the or-
thologous pair.

The results for the orthologous pairs of protein
for the three pairs of organisms considered are listed

in Table 1. In this table, the values in the columns
denoted by ”Relatedness” are computed with our
method, while the others are taken from [14]. In the
third column, for each pair of organisms, the mean
of the local alignment bit score obtained for each
pair of orthologous proteins when using a scaled ver-
sion of the BLOSUM 62 substitution matrix is listed.
In the fifth and sixth columns, the median change
in bit score with respect to BLOSUM 62 when us-
ing composition-adjusted matrices is listed. For the
composition-adjusted matrices, the background fre-
quencies were adjusted for proteome frequencies (the
column denoted by ”Organism”) and for the frequen-
cies of the two sequences considered (the column de-
noted by ”Sequence”). In the last two columns, the
median changes in bit score when using our method to
compute the local similarity score with respect to the
values obtained when using the scaled version of the
BLOSUM 62 substitution matrix and composition ad-
justed matrices with background frequencies adjusted
for the frequencies of the two sequences compared are
presented . In Table 3, the bit scores and the median
changes in bit score for all the orthologous pairs for
Bacillus subtilis and Lactococcus lactis are presented.
The values in the last column in this table are com-
puted with respect to the best values obtained in [14]
(the values in the column ”Sequences”). The values in
the columns denoted by ”Relatedness” are computed
using our method.

With our method to compute the local similarity
of two proteins, we obtained better results for the last
two pairs of organisms with respect to values obtained
when the scaled version of the BLOSUM 62 substi-
tution matrix is used and when composition adjusted
matrices with background frequencies adjusted for the
two sequences compared are used.

For the set of unrelated sequences, we did not
have access to the values computed for all pairs of se-
quences and in this way we cannot report the median
change in bit score with respect to values obtained
when using the BLOSUM 62 substitution matrix or
values obtained when using composition-adjusted ma-
trices. The only value we can report is the mean bit
score for the three pair of organisms. The values
are presented in Table 2. The third column contains
the mean bit score obtained when comparing the un-
related protein pairs using the scaled version of the
BLOSUM 62 substitution matrix and the last column
presents the mean bit score when comparing the un-
related pairs of proteins using our method. Using our
method to compute the local similarity, a decrease for
the mean bit score was observed for the last two pairs
of organisms.
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5 Discussions and conclusions

We have tested if our method of defining the relat-
edness at a macro scale, by comparing different pro-
teomes, can also be used at a micro scale to compare
different pairs of proteins. Using a slightly different
algorithm introduced in [15], the relatedness of two
proteins can be seen as a measure of the local similar-
ity of the two proteins. To test the ability of our algo-
rithm to measure the local similarity of two proteins,
we used the same data set as in [14] where composi-
tional adjusted matrices were used to score all the pro-
tein pairs in the data set. Using our method to measure
the local similarity of two proteins, we obtained an in-
creased value for the median change in bit score for
two of the data sets for the orthologous pairs and for
the same two data sets, a decreased value of the mean
bit score for the unrelated pairs, which means that our
method manages to capture the biological meaningful
features of the sequences involved.
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Median change in bit Median change in bit
Mean score with respect to score with respect to

Sequence Organisms No. of BLOSUM 62 BLOSUM 62 Sequence
pairs compared sequences bit score Organism 1 Sequence 1 Relatedness 2 Relatedness 2

Related C.tetani and 40 68.3 +1.6 +2.3 +0.6 -3.5
M.tuberculosis
B.subtilis and 37 59.8 +1.1 +2.1 +10.9 +7.5

L.lactis
M.tuberculosis 34 58.6 +1.4 +2.7 +4.6 +1.79

and S. coelicolor

Table 1: The relatedness computed for the orthologous pairs in the three sets. 1 Values taken from [14]. 2 Values
computed with our method.

Sequence Organism No. of Mean bit score
pair compared sequences BLOSUM 62 1 Relatedness 2

Unrelated C. tetani and 1,560 16.7 17.05
M. tuberculosis
B.subtilis and 1,332 15.7 12.26

L. lactis
M. tuberculosis 1,122 16.4 14.33

and S. coelicolor

Table 2: The mean bit score for the unrelated pairs of proteins in the three sets. 1 Values taken from [14]. 2 Values
computed with our method.
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