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Abstract: - In many cases when a study of multi-bodies systems is perform, the hypothesis of rigid elements is 
considered. In reality the elasticity of the components of the system can be large enough so that the dynamic 
response can be not only quantitative but also qualitative different. For this reason, in some applications, 
particularly in the field of robotics and high-speed vehicles, is necessary to consider the elasticity of elements 
and to use correspondent models. Generally, the multi-bodies systems have a great complexity and the strong 
non-linearity. To study such system with the classic mechanics theorems is not a practical task because the 
motion equations have, generally, no analytical solutions. For this reason is necessary to use numerical 
methods and the finite element methods (FEM) remains one of the most important tools. 
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1   Introduction 
The major difficulty using FEM is the non-linearity 
of the motion equations. The coefficients that 
appears in equations are time-position dependent 
and, in some practical application (mechanisms with 
a periodical motion) they can be periodical. To solve 
this problem the motion must be considered 
“frozen” for a very short interval of time. In this 
case the obtained equations can be considered linear.  
 Writing the principle of minimum energy is possible 
to obtain the motion equations for a finite element 
with a three-dimensional rigid motion. These 
equations have some important particularities: in the 
equations exists Coriolis terms (conservative) and 
the rigidity is modified by the some terms 
determined by the “rigid motion” of element. They 
depend on element distribution mass and on the field 
of velocities and accelerations. More, the force term 
of equations is modified by the effect of inertia 
forces and momentum due to the relative motion. 
      For this reason it exists two difficult and major 
problems when is used finite element method: one 
consist in the fact that the equation are more large 
and with more terms as in the classical procedures 
and the second is that the equations are only 
incremental valid, for a very short time interval; 
after this interval must generate new coefficient for 
the motions equations and the solutions previously 
obtained are the initial conditions for the new 
equations.  

In the following we will establish the motion 
equations for an elastic finite element with a general 
motion together with an element of the system. The 
type of the shape function is determined by the type 
of the finite element. For this reason we will present 
the motion equations in three different situations: for 
a three-dimensional finite element with a general 
three-dimensional motion, for a two-dimensional 
finite element with a plane motion and for an one-
dimensional element with a general three-
dimensional motion. We will consider that the small 
deformations will not affect the general, rigid 
motion of the system. 
 
 
2   Motion equations 
We consider that, for the all elements of the system, 
we know the field of the velocities and of the 
accelerations. We refer the finite element to the local 
coordinate system Oxyz, mobile, and having a 
general motion with the part of system considered 
(fig.1). We note with )Z,Y,X(v oooo  the velocity 
and with )Z,Y,X(a oooo  the acceleration of the 
origin of the local coordinate system. The motion of 
the whole system is refer to the general coordinate 
system O’XYZ. By [ R ] is denoted the rotation 
matrix. The velocity of point  M’ will be: 
{ } { } [ ]{ } [ ]{ } [ ]{ }=+++= fRfR'rRrv o'M  
{ } [ ]{ } [ ][ ]{ } [ ][ ]{ }eeo NRNR'rRr δ+δ++ .   (1) 
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Fig. 1 Finite element in a three- 

dimensional motion 
The kinetic energy of the finite element considered 
is: 
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where ρ is the mass density  and the deformation 
energy is: 
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where  is the rigidity matrix for the e element. If 
we not with { }  the distributed forces 
vector, the external work of these is: 
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and the nodal forces  produce an external work: { }eq
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The Lagrangean for the considered element is obtain 
with the relation: 
 

c
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If we apply the Lagrange’s equations, we obtain: 
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If we note by  the lines of matrix ( ) ( ) ( )321 ,, NNN
[ ]N  we obtain: 
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In these relations we have denoted: 
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We obtain the motion equations: 
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or, if we note: 
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it result the motion equations for the finite element 

Proc. of the 5th WSEAS Int. Conf. on Non-Linear Analysis, Non-Linear Systems and Chaos, Bucharest, Romania, October 16-18, 2006       117



analyzed in a compact form: 
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where  represent the angular velocity and Ω E  the 
angular acceleration with the components in the 
local coordinate system. 
 
 
3   Assembling procedures and Liaison 
forces eliminating 
The unknowns in the elasto-dynamic analysis of a 
mechanical system with liaisons are the nodal 
displacements and the liaison forces. By assembling 
the motion equations written for each finite element 
we try to eliminate the liaisons forces and the 
motion equations  will  contain  only  nodal  
displacements  as  unknowns. The liaison between 
finite elements are realized by the nodes where the 
displacements can be equal or can exists other type 
of functional relations between these. When two 
finite elements belong to two different elements 
(bodies) the liaison realized by node can imply 
relations more complicated between nodal 
displacement and their derivatives. Generally, the 
relations between the first order derivative of the 
nodal displacements can be expressed by the linear 
formulas:  
 
{ } [ ]{ }qA=Δ ,               (19) 
 
where by { we have noted the nodal displacement 
vector and by {  the nodal independent 
displacements. By differentiation (14)  we obtain: 

}Δ
}q

 
{ } [ ]{ } [ ]{ }qAqA +=Δ .              (20) 
 
The transformation relations between the 
displacements expressed in the global fix coordinate 
system and the displacements expressed in the 
local mobile coordinate system {

{ }eΔ
}eδ  are: 

 
{ } [ ]{ }eee R δ=Δ ,               (21) 
 
where index e denote the e-th element. 
     For a single finite element that belong to an 
elastic component of the system that has a general 
three-dimensional rigid motion with the angular 
velocity ω   and the angular acceleration ε  (or Ω  
and E  in the mobile co-ordinate system) we 
consider the motion equations obtained by the 

relation (21). For the other cases the procedures are 
the same. 
     The equations are expressed in the local mobile 
reference system. If we write these equations in the 
global fix coordinate system, they keep there form:  
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We will note in the following: 
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and we can obtain finally the motion equations for 
the whole structure, referred to the global coordinate 
system, under the form: 
 
[ ]{ } [ ]{ } [ ] ( )[ ] ( )[ ]( ){ }=Δω+ε++Δ+Δ 2KKKC2M

{ } { } { } { }inertielegext*ext QQQQ +++= .            (24) 
 
If we take into account the relations (23) and (24) 
we can write: 
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It can be shown  that the work of the liaison forces 
for system can be written: 
 

=dL  { } { } { } [ ] { } dtQAqdtQ legTTlegT
=Δ .            (26) 

 
But the work due to the liaison forces is null for an 
ideal system and the independence of the nodal 
coordinates  q  offer  the relation: 
 
[ ] { } 0QA legT = ,               (27) 
 
that is the basic relation in the following. 
 
 
4   Motion equations assembling 
We consider relation (24) and we pre-multiply this 
with  [ ]A T . We obtain: 
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If we take into account the relation (27) the Liaison 
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forces (the nodal forces) vanish and it result a 
system of equations without liaison forces and the 
unknown are only the nodal displacements. This 
result justify the assembling methods used in the 
case of the mechanical systems with Liaisons 
analyzed via finite element method. 
 
[ ] [ ][ ]{ } [ ] [ ][ ] [ ][ ] { }
[ ] [ ] ( )[ ] ( )[ ]( )[ ]{ } =ω+ε+

+++
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2T

TT

[ ] { } [ ] { } [ ] { }inertiaText*TextT QAQAQA ++= .    (29) 
 
The system of differential equations obtained is 
nonlinear, the matrix of the left term depending on 
the configuration of the multi-body system. These 
equations contain the “rigid motion” of the system 
and for these they have one or more singularities. To 
solve the equations the rigid motion must be 
eliminated. 
 
 
5   The influence of the Coriolis terms 
The matrix [  is skew-symmetric.  If we want to 
obtain the energy balance by integration, we obtain 
that the variation of energy due to the term skew-
symmetric is null. Consequently,  the Coriolis term 
only transfer the energy between the independent 
coordinates of the system and had no role in the 
dissipation of the energy. If we consider now a 
motion mode on the form: 

]c
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and we introduce in the motion equations, where the 
forces are considered null, we obtain: 
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If we pre-multiply with { }  and we consider the 
relations: 

TA
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([c] and [  are skew-symmetric), it results: ]εk
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This relation can not express, in a direct way,  the 
influence of the matrix [c]  in the eigenvalues 

calculus, but this influence is present by the 
eigenvectors { }A . The terms [  has an influence on 
the values of the eigenvalues. Some of the 
eigenvalues increase and the other decrease. This 
variation is presented, extended, in the paper. 
Between these values there exist some interesting 
relations. 

]c

 
 
6   Conclusions 
The problems involved by finite element analysis of 
an elastic system are the followings: 
- the strong geometric non-linearity of the motions 
equations and the additional term that appear in 
these; 
- the motion equations are valid only for the 
“frozen” system, for a very short interval of time. 
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