
An Automatic Code Generation Tool for JADE Agents

FLORIN STOICA
Computer Science Department

University “Lucian Blaga” Sibiu
Str. Dr. Ion Ratiu 5-7, 550012, Sibiu

ROMANIA

Abstract: - SDL (Specification and Description Language) is an object-oriented, formal language defined by The
International Telecommunications Union – Telecommunications Standardization Sector (ITU-T), applicable to the
specification and implementation of distributed systems. SDL is capable of describing the evolving state of
asynchronous, concurrent systems, such as agent - based systems. The work presented in this paper consists on a tool
responsible for generating JADE agents automatically from SDL specifications, in order to help the process of
prototyping agent - based applications developed on JADE framework. The generated code is a completely functional
Java code.

Key-Words: - SDL, JADE, agents, parser, FSM, ANTLR

1 Introduction
The key to successfully developing a system is to
produce a thorough system specification and design. For
this task, SDL is a suitable specification language. It is a
graphical specification language that is both formal and
object-oriented. The language is able to describe the
structure, behaviour and data of real-time and distributed
communicating systems with a mathematical rigor that
eliminates ambiguities and guarantees system integrity.
The most important characteristic of SDL is its
formality. The semantics behind each symbol and
concept are precisely defined. The specifications using
SDL are intended to be formal in the sense that it is
possible to analyse and interpret them unambiguously.
SDL is intended to specify the behavioural aspects of a
system. Thus, a SDL specification of a system is the
description of its required behaviour.
Agents are the fundamental specification concept of
SDL-2000 [8]. The behaviour of an agent is described as
an extended finite state machine: when started, an agent
executes its start transition and enters the first state. The
reception of a signal triggers a transition from one state
to a next state. In a state, an agent may execute actions
(tasks). Actions can assign values to variable attributes
of the agent, branch on values of expressions, call
procedures, create new agent instances and send signals
to other agents.
In the following we present a model for SDL finite state
machines, which is also suited for FSM-driven
behaviour of a JADE agent, implemented by
FSMBehaviour class. This model will help us to
elaborate the mapping rules between SDL and JADE
concepts, used by the SDL to JADE/Java code
generation tool to translate an SDL specification into

equivalent JADE code.

2 Reactive finite state machines
A reactive finite state machine is a tuple

(Q, Σ, ∆, δ, q0, F) where
Q is a finite, non-empty set of symbols called states,
Σ is a set of symbols representing valid inputs,
∆ is a set of symbols representing valid outputs,
δ is the state transition function: δ : Q × (Σ∪{none}) →
(Q∪{err}) × (∆∪{default}),
q0 is an element of Q, the initial state,
F ⊆ Q is the set of final states. `
Elements from Σ will be called signals, and elements
from ∆ will be called events. In one reaction, a FSM
associate a current state p ∈ Q and an input signal a ∈ Σ
with a next state q∈ Q and an output event b∈∆, where
δ(p,a) = (q, b).
The behavior of an FSM is more easily understood when
this is represented graphically in the form of a state
transition diagram. The control states are represented by
circles, and the transition rules are specified as directed
edges. Each transition is labeled by event from ∆ that
triggers the transition. The arc without a source state
denote then initial state of the system (state q0).
During one reaction of the FSM, one transition is
triggered, chosen from the set of admissible transitions
(outgoing transitions from the current state), so that label
of transition matches the terminating event of the current
state. The FSM goes to the destination state of the
triggered transition. Apparition of a terminating event
for current state is conditionated by reception of one
signal from Σ (leaving from a state could be done only if

Proc. of the 8th WSEAS Int. Conf. on Mathematical Methods and Computational Techniques in Electrical Engineering, Bucharest, October 16-17, 2006 21

was received a signal), an exception being the special
signal none, which induce a spontaneous transition.
If terminating event of the current state q ∉ F is not
explicit associated with an admissible transition, then:
• if exist the admissible transition labelled with

default, this transition (called implicit transition)
will be triggered;

• else FSM goes in an inconsistent state, denoted
through err.

In case if FSM arrive in a state q ∈ F, after completeness
of activities from that state, execution of finite state
machine is stopped.

3 Jade agents with FSM behaviours
JADE is a middleware that facilitates the development of
multi-agent systems and applications conforming to
FIPA standards for intelligent agents [11].
The Agent class represents a common base class for user
defined agents. The computational model of an agent is
multitask, where tasks (or behaviours) are executed
concurrently. A scheduler, internal to the base Agent
class and hidden to the programmer, automatically
manages the scheduling of behaviours.
A behaviour represents a task that an agent can carry out
and is implemented as an object of a class that extends
jade.core.behaviours.Behaviour. In order to make an
agent execute the task implemented by a behaviour
object it is sufficient to add the behaviour to the agent by
means of the addBehaviour() method of the Agent class.
Each class extending Behaviour must implement the
action() method, that actually defines the operations to
be performed when the behaviour is in execution and the
done() method (returns a boolean value), that specifies
whether or not a behaviour has completed and have to be
removed from the pool of behaviours an agent is
carrying out. Scheduling of behaviours in an agent is not
pre-emptive (as for Java threads) but cooperative. This
means that when a behaviour is scheduled for execution
its action() method is called and runs until it returns. The
termination value of a behaviour is returned by his
onEnd() method [2]. The path of execution of the agent
thread is showed in the following pseudocode:

void AgentLifeCycle() {
 setup();
 while (true) {
 if (was called doDelete()) {
 takeDown();
 return;
 }
 Behaviour b =
 getNextActiveBehaviourFromSchedulingQueue();
 b. action();

 if (b.done() returns true) {
 removeBehaviourFromTheSchedulingQueue (b);
 int terminationValueOfTheBehaviour = b.onEnd();
 }
 }
}

Fig. 1 The life cycle of an JADE agent

Agent behaviours can be described as finite state
machines, keeping their whole state in their instance
variables.
The FSMBehaviour class provides the possibility of
combining simple behaviours together (children) to
create complex behaviours. The FSMBehaviour executes
its children according to a Finite State Machine (FSM)
defined by the user. More in details each child represents
the activity to be performed within a state of the FSM
and the user can define the transitions between the states
of the FSM. When the child corresponding to state Si
completes, its termination value (as returned by the
onEnd() method) is used to select the transition to fire
and a new state Sj is reached. At next round the child
corresponding to Sj will be executed. Some of the
children of an FSMBehaviour can be registered as final
states. The FSMBehaviour terminates after the
completion of one of these children.
The following methods are needed in order to properly
define a FSMBehaviour:
• public void registerFirstState(Behaviour state,
 java.lang.String name)

Is used to register a single Behaviour state as the initial
state of the FSM with name name.
• public void registerLastState(Behaviour state,

 java.lang.String name)
Is called to register one or more Behaviours as final
states of the FSM.
• public void registerState(Behaviour state,

 java.lang.String name)
Register one or more Behaviours as the intermediate
states of the FSM.
• public void registerTransition(java.lang.String s1,

 java.lang.String s2, int event)
For the state s1 of the FSM, register the transition to the
state s2, fired by terminating event of the state s1 (the
value of terminating event is returned by onEnd()
method, called when leaving the state s1 - sub-behaviour
s1 has completed).
• public void registerDefaultTransition(

 java.lang.String s1,
 java.lang.String s2)
This method is useful in order to register a default
transition from a state to another state independently on
the termination event of the source state.

Proc. of the 8th WSEAS Int. Conf. on Mathematical Methods and Computational Techniques in Electrical Engineering, Bucharest, October 16-17, 2006 22

4 SDL Systems
SDL Systems consist of a structure of communicating
Agents. Each agent may have variables, procedures, a
state machine and a structure. An agent is characterised
by the signals it may receive from and send to other
agents, and by the procedures that it may perform upon
request. SDL provides the following kinds of diagrams
[12]: Agent diagrams that describe the properties of
Agents, in terms of variables, procedures, an Agent state
machine and contained Agents, State diagrams that
depict the behaviour of Agents in terms of States and
state Transitions, Procedure diagrams that depict the
behaviour of Procedures and Package diagrams that
define types that can be used in other diagrams.
The behaviour of an agent is described as an Extended
Finite State Machine: when started, an agent executes its
start transition and enters the first state. The reception of
a signal triggers a transition from one state to a next
state. In transitions, an agent may execute actions
(tasks). Actions can assign values to variable attributes
of the agent, branch on values of expressions, call
procedures, create new agent instances and send signals
to other processes. Communication by means of sending
signals is asynchronous.
SDL gives a choice of two different syntactic forms to
use when representing a system: a Graphic
Representation (SDL/GR), and a textual Phrase
Representation (SDL/PR). As both are concrete
representations of the same SDL system, they are
equivalent [5].

5 Agent behaviour specification in SDL
This section introduces a simple example for an agent
behaviour specification in SDL [10]. For building SDL
specifications, has been used Cinderella. Cinderella SDL
is a CASE (Computer Aided Software Engineering) tool
which is available from Cinderella (www.cinderella.dk).
Figure 3 shows the State diagram which describe
behaviour of MyAgent agent as an Extended Finite State
Machine (SDL/GR representation).
The SDL/PR representation of MyAgent is:

process MyAgent ;
 signalset Inform,Result;
 dcl i Integer :=5, j Integer :=0;
 signal Inform(Integer), Result(Charstring);
start;
task i:=i*2 ;
 nextstate State_A ;
state State_B ;
 input none;
 output Result('i was greater') ;
 stop;

endstate;
state State_C ;
 input none;
 output Result('i was smaller') ;
 stop;
endstate;
 state State_A ;
 input Inform(j) ;
 task i:=i-j ;
 decision i>0 ;
 (false): nextstate State_C ;
 (true): nextstate State_B ;
 enddecision;
 endstate;
endprocess;

Fig. 2 SDL/PR representation of MyAgent

Fig. 3 SDL/GR representation of MyAgent

Proc. of the 8th WSEAS Int. Conf. on Mathematical Methods and Computational Techniques in Electrical Engineering, Bucharest, October 16-17, 2006 23

The following table contains explanations about symbols
used in SDL/GR representation of MyAgent:

Symbol Description

A text symbol is a basic symbol
which contains textual definitions
(data types, signals etc.).

The start symbol is used as start
symbol for FSM

The state symbol is used to
represent a state of FSM

The input symbol (receiving
signals). A spontaneous signal
symbol is an input symbol
containing the text none (it induces
spontaneous transitions)

The task symbol (performing
activities)

The output symbol (sending
signals)

The decision symbol (branch
execution)

The stop symbol (execution of the
finite state machine is stopped).

Table 1 SDL graphical symbols used in MyAgent
specification

In Cinderella SDL, we can simulate our specification.
When simulation is started, an environment process
(Env) is created from which stimuli can be sent to the
system and which holds in its input queue the signals
sent from the system. If we are sending to MyAgent an
Inform signal with parameter 9, the agent replies with
signal Result, having parameter ‘i was greater’.

6 Generating JADE agents from SDL
 specifications
The work presented in this paper consists on a translator
which generate automaticaly Java code parsing an
SDL/PR specification that should have been developed
in a previous step (an SDL specification defined in the
graphical format SDL/GR can be saved in the textual
format SDL/PR using the File export command from
Cinderella).
In table 2 are defined mapping rules between SDL and
JADE concepts. The SDL to JADE/Java code generation

tool uses table 2 to convert the SDL specifications into
equivalent JADE code.

SDL specification FSMBehaviour of a Jade
agent

Start symbol The setup() method of the
agent

State symbol Child Behaviour registered
as state of FSMBehaviour

Activities performed
within a state

The action() method of
child Behaviour associated
with that state

Transition from
current state to next
state (nextstate)

The done() method of child
Behaviour associated with
current state returns true

Stop symbol The doDelete() method of
class Agent, called from
child Behaviour associated
with SDL state within is
reached the stop symbol;
this Behaviour will be
registered as final state in
FSMBehaviour

Signal receiving Receiving a JADE message
Receiving a none
signal in a certain
state

Execution of activities from
action() method of child
Behaviour associated with
that state (and generation of
a terminating event for that
state), unconditioned by
reception of a proper signal

Table 2 Mapping rules between SDL and JADE

The tool reads a file that contains the SDL specifications
in a textual form (SDL-PR) and, based on these
specifications, produces the equivalent Java code for the
behavioral description of the SDL system.
Typically, the procedure from requirements analysis to
product implementation would involve the following
steps:
• collect the initial requirements;
• make the SDL diagrams (specifications) to a level

where they can be analysed, simulated and checked
for consistency with the system requirements
analysis (this can be done in Cinderella);

• when SDL design has proved consistent with the
requirements, a code for the application can be
generated.

In the following we present the tool responsible for
generating JADE agents automatically from SDL design.
This tool is based on the SDL parser developed by
Michael Schmitt [6], which used ANTLR to build his
own parser.

Proc. of the 8th WSEAS Int. Conf. on Mathematical Methods and Computational Techniques in Electrical Engineering, Bucharest, October 16-17, 2006 24

ANTLR, ANother Tool for Language Recognition, is a
tool that accepts grammatical language descriptions and
generates programs that recognize sentences in those
languages. ANTLR knows how to build recognizers that
apply grammatical structure to three different kinds of
input: (i) character streams, (ii) token streams, and (iii)
two-dimensional trees structures. Naturally these
correspond to lexers, parsers, and tree walkers. The
syntax for specifying these grammars, the meta-
language, is nearly identical in all cases. ANTLR knows
how to generate recognizers in Java, C++, C# [1].
The parser developed by Michael Schmitt reflects the
SDL-2000 standard correctly and produces the abstract
syntax tree (AST) of an SDL/PR specification.
Specification of the SDL grammars is provided in three
files: SDLLexer.g, SDLParser.g and SDLTreeParser.g;
these correspond to generated lexer, parser, and tree
walker, respectively. If the buildAST flag in the ANTLR
parser options section is set to true, the parser created by
ANTLR will read the source langauge and create
ANTLR abstract syntax trees in memory. The tree
walker undertake the complete building of the abstract
syntax tree.
An abstract syntax tree (AST) captures the essential
structure of the input in a tree form, while omitting
unnecessary syntactic details. ASTs can be distinguished
from concrete syntax trees by their omission of tree
nodes to represent punctuation marks such as semi-
colons to terminate statements or commas to separate
function arguments. ASTs also omit tree nodes that
represent unary productions in the grammar. Such
information is directly represented in ASTs by the
structure of the tree. Each node holds a token and
pointers to its first child and next sibling:

Fig. 4 A fragment from AST generated for the agent

MyAgent described above

With the implementation of the AST components
complete, the subsequent phases of the translator has
been implemented. The code generator provide
Java/JADE code walking a derived AST, completed with
actions which are executed during tree walking. An
action is a piece of code that run when a rule is matched.
Actions can appear anywhere within a rule: before,
during, or after a match.
The specification of the tree grammar is provided in the
file SDLJADEParser.g. Computational tasks of the tree
walker, generated by ANTLR from the tree grammar,
are:
• completeness of building of the abstract syntax tree,

initiated by the parser;
• walking the final AST;
• generation of Java/JADE code, through execution of

actions associated with tree nodes, during tree
walking.

The translator involve complex data structures. We
decided to use the Standard Template Library (STL),
which has C++ class templates for a wide range of basic
building blocks of data structures, ranging from simple
lists to associative arrays and hash tables.
For implementing the actions, the following
variables/data structures were used:

static string firstState=""; //initial state
static string nextState=""; //next state
static string currentState=""; //current state
//associate each state with its current terminating code
//(event) which induce the transition;
// this represent the value of private variable _onEnd
//of the child behaviour which completes
typedef map<string, int, less<string>, allocator<int> >
TMapStateCode;
//associate each state of the FSMBehaviour with its child
//Behaviour
typedef map<string, string, less<string>,
allocator<string> > TMapStateBehaviour;
//associate each child Behaviour with its
//terminating condition from the done() method
typedef map<string, string, less<string>,
allocator<string> > TMapStateEnd;
//associate each variable with its type
//in order to translate correctly variable declarations
//and type conversions
typedef map<string, string, less<string>,
allocator<string> > TMapVarType;
// variable declarations
TMapStateCode mapStateCode;
TMapStateCode::iterator itStateCode; //iterator
TMapStateBehaviour mapStateBehaviour;
TMapStateBehaviour::iterator itStateBehaviour;
TMapStateEnd mapStateEnd;
TMapStateEnd::iterator itStateEnd; //iterator

AgentStructure

ValidInputSignalSet

SignalList

SignalListItem SignalListItem

‘Inform’ ‘Result’

VariableDefinition

SignalDefinition AgentBody

…

… …

Proc. of the 8th WSEAS Int. Conf. on Mathematical Methods and Computational Techniques in Electrical Engineering, Bucharest, October 16-17, 2006 25

TMapVarType mapVarType;
TMapVarType::iterator itVarType; //iterator

Receiving a SDL signal is equated with receiving a
JADE message:

stimulus {string msgName, msgVariable;}:
#(Stimulus
 s:signalListItem {msgName =
 s->getFirstChild().get()->getText();}
((v: variable { msgVariable =
 v->getFirstChild().get()->getText(); } | Void)+)?)
{
 /* receiving a JADE message */
char * performative =
 _strupr(_strdup(msgName.c_str()));
mapStateBehaviour[currentState].append(
"MessageTemplate mt = " +
"MessageTemplate.MatchPerformative(ACLMessage.");
mapStateBehaviour[currentState].append(performative);
mapStateBehaviour[currentState].append(");\n");
mapStateBehaviour[currentState].append(
 "ACLMessage msg = myAgent.receive(mt);\n");
mapStateBehaviour[currentState].append(
 "if (msg != null) {\n");
mapStateBehaviour[currentState].append(
 "String strVal = msg.getContent();\n");
/* get the variable type and make the corresponding
 conversion */
if ((itVarType = mapVarType.find(msgVariable)) = =
 mapVarType.end())
 cout << "Error! Variable: " << msgVariable <<
 " isn’t declared!" << endl;
else {
 /* only Integer type is treated here*/
 if ((*itVarType).second.compare("Integer") = =0) {
 /* conversion to integer value */
 mapStateBehaviour[currentState].append(
 msgVariable + " = Integer.parseInt(strVal);\n");
 }
 ...
}
mapStateCode[currentState]++;
mapStateBehaviour[currentState].append("_onEnd = " +
getStateCode(currentState) + ";\n");
mapStateBehaviour[currentState].append("}\n");
mapStateBehaviour[currentState].append("else {\n");
mapStateBehaviour[currentState].append(" block();\n");
mapStateBehaviour[currentState].append("}\n");
...
} ;
After compilation, the generated agent MyAgent can be
activated in the JADE platform. After receiving an
INFORM message with content 9, the agent response is

identical with that obtained from simulation of his
specification ('i was greater'):
INFO: --------------------------------------
Agent container Container-2@JADE-IMTP://server2 is
ready.
--
i was greater

7 Conclusion
In this paper was presented implementation of a
translator which generate automatically Java code
parsing a SDL/PR specification of an agent, targeting the
JADE platform. For this purpose, was ported on
Windows platform (as a Microsoft Visual C++ 6.0
project) the SDL parser developed by Michael Schmitt
on SuSE 8.1. This parser was extended with a tree parser
grammar, SDLJADEParser.g. Because the project is
based on ANTLR, was necessary to port on Microsoft
Visual C++ the ANTLR runtime, resulting the library
libantlr.lib, used to produce the generator executable.
In this stage of work, the generated code can be used as a
prototype of a real agent-based application.

References:
[1] ANTLR Reference manual, http://www.antlr.org
[2] F. Bellifemine, G. Caire, T. Trucco, G. Rimassa,
JADE programmer’s guide, http://jade.tilab.com
[3] G. Bucci, A. Fedeli, E. Vicario, Specification and
Simulation of Real Time Concurrent Systems Using
Standard SDL Tools, R. Reed (Ed.): SDL 2003, LNCS
2708, pp. 203–217, 2003.
[4] J. Floch, R. Braek, Using SDL for Modeling
Behaviour Composition, R. Reed (Ed.): SDL 2003,
LNCS 2708, pp. 36–54, 2003
[5] ITU-T Recommendation Z.100, Specification and
description language (SDL), International
Telecommunication Union (ITU), 2000
[6] M. Schmitt, SDL-2000 parser/syntax checker,
http://www.teststep.org/
[7] B. Moller-Pedersen, SDL Combined with UML,
Telektronikk 4.2000
[8] R. Braek, A. Meisingset, The ITU-T Languages in a
Nutshell, Telektronikk 4.2000
[9] SDL Forum Society, http://www.sdl-forum.org/
[10] F. Stoica, SDL executable specifications of agent-
based systems, The Proceedings of the International
Economic Conference “25 Years of Higher Economic
Education in Brasov”, 2005, Editura Infomarket,
ISBN 973-8204-72-0
[11] The Foundation for Intelligent Physical Agents
(FIPA), www.fipa.org
[12] SINTEF ICT, TIMe: The Integrated Method,
http://www.sintef.no/time/

Proc. of the 8th WSEAS Int. Conf. on Mathematical Methods and Computational Techniques in Electrical Engineering, Bucharest, October 16-17, 2006 26

