
Extending Globus Toolkit Java WS Core to Support
Reliable Grid Messaging Services

PING-JER YEH
y
, WINSTON LO

z
, YUNG-YU CHEN*, SHYAN-MING YUAN

y

y
{pjyeh, smyuan}@cis.nctu.edu.tw

*sendoh.cis89@nctu.edu.tw

Department of Computer Science
National Chiao Tung University

1001, Ta Hsueh Road, Hsinchu 300
TAIWAN

z
winston@thu.edu.tw

Dept. of Computer Science and Information
Engineering, Tunghai University

181, Taichung Harbor Road, Sect. 3
Taichung 40704

TAIWAN

Abstract: The newest version of Globus Toolkit (GT4) adopts services-oriented architecture to provide grid
environment based on Web Services. However, Globus Toolkit does not guarantee to reliably send and receive
messages during messages passing between Web Services. Furthermore, the messages communication
mechanism which Globus Toolkit Java Web Services Core provides is based on the changes of resource
properties. In other words, it regards messages as resources properties but that is unreasonable for the
perspectives of the programmers. In this research, we integrate GT4 Java WS core and our persistent version of
JMS middleware (PFJM) to design reasonable programming styles and provide convenient and useful tools for
Web Services development users by wrapping PFJM into PFJM Web Services (PFJM WS). Finally, we give a
throughput test of messages communication respectively for GT4 Java WS core and PFJM WS. In the report, we
can see that PFJM WS has a higher performance than GT4 Java WS core.

Key-Words: grid computing, Web service, Java Message Service (JMS), PFJM, Globus Toolkit

1 Introduction

1.1 Movitation
In recent years, grid technology [1, 2] is considered a
good opportunity to integrate enterprise resources
such as computing powers, storages, etc. Among
them, the Globus Toolkit (GT) [3] is an open source
software toolkit used for building grid systems and
applications. It is developed by the Globus Alliance
and many others all over the world. Java WS Core [4]
is one of GT common runtime components and it
provides APIs and tools for developing Grid services
and offers a run-time environment capable of hosting
them. The Java WS Core in GT4 implements the Web
Services Resource Framework (WSRF) [5, 6, 7] and
the Web Service Notification (WSN) [8] family of
standards.

However, the communication mechanism
between Web services does not guarantee reliable
messaging. In other words, the notification consumer
can not reliably receive the messages sent by
notification producer since the unreliable network.
Furthermore, communication between applications in
enterprise environment is expected to be reliable
because the messages lost may case a very serious

consequence. It stands to reason that we extend
Globus Toolkit WS Core to support reliable
messaging.

Looking from another view, the architecture of
Java Message Service (JMS) [9] can remedy the
unreliability problem of Web Service Notification
used by GT Java WS Core. It is more important that
JMS provides the guarantee of reliable messaging. So
in this research we integrate Persistent Fast Java
Messaging (PFJM) [10, 11, 12, 13, 14, 15], a
JMS-compliant product developed by our laboratory,
into GT Java Web Core to provide useful web
services for reliable messaging.

1.2 Research Objectives
In this research, we discuss the necessity of reliable
messaging and the defective GT4 Java WS core.
There are two objectives in this research including
reliable messaging and reasonable programming
styles.

1.2.1 Reliable messaging
Since the GT4 Java WS core lacks reliable messaging
which is important for grid applications, we integrate
a JMS compliant product, PFJM, into GT4 Java WS
core to provide reliable messaging mechanism. The

Proceedings of the 5th WSEAS Int. Conf. on DATA NETWORKS, COMMUNICATIONS & COMPUTERS, Bucharest, Romania, October 16-17, 2006 212

features are described in the following:
1. Persistent messaging: Persistent messages are

guaranteed to survive through JMS provider
failure. If a message is set as persistent, before
it is sent to the network, it must be stored in a
persistent storage.

2. Durable subscription: Durable subscribers are
guaranteed to receive persistent message
published during their registration and
de-registration, even they are not always active.

1.2.2 Reasonable programming styles
Since messages in GT4 Java WS core are always
marked as a resource property, it is unreasonable from
the programmer’s point of view. For programmers,
they expect to use Topic as the message destination to
send and receive messages. Through our system,
PFJM WS, clients can use JMS-like programming
style to send and receive messages reliably.

2 System Architecture and Design
Globus Java WS Core is an implementation of WSRF,
WSN, and other relevant Web Services family of
standards. It provides an environment and tools to
help develop plain Web Services and stateful Web
Services. So the solution we use is to utilize these
components Java WS core provides to wrap PFJM
into Web Services. Whenever a client wants to
communicate with others using reliable messaging, it
can simply exploit the Web Services we provide to
easily achieve its goal.

In Section 2.1, we will show the system
architecture and introduce the basic operation and
relationship of each component in the architecture.
Then we will introduce the individual service
portType we support in Section 2.2 and the
mechanism of communication in Section 2.3.

2.1 High-Level Architecture
Figure 1 depicts the simplified system architecture.
Whenever a client wants to be a message sender or a
message receiver, it firstly must locate the persistent
JMSFactoryService. A persistent service is a service
which resides in the Web Services container when the
container starts. After locating the
JMSFactoryService, the client can use that to create a
transient JMSPublisherService or
JMSSubscriberService depending on what the client
wants to be. Compared to a persistent service, a
transient service is a service which can be created and
destroyed dynamically. Then the client can use
JMSPublisherService or JMSSubscriberService to
create a PFJM instance, a publisher or a subscriber,

and finally use the PFJM instance to do publish or
subscribe operation via reliable messaging.

2.2 Service PortTypes

2.2.1 JMSFactory PortType
First of all, a Web Service can be addressed by a
so-called EndpointReference. By passing the
EndpointReference to a ServiceAddressingLocator, a
client can get the service’s portType implementation
defined in the WSDL file. As well as JMSFactory
portType which we provide using Factory design
pattern, the client can use
JMSFactoryAddressingLocator to locate the
JMSFactory service.

The position of the JMSFactory is to create a
JMSPublisher service or a JMSSubscriber service.
Now let us take a look at how the JMSFactory works.
For the purpose of managing created services, we
provide two auxiliary managers,
JMSPublisherManager and JMSSubscriberManager
respectively in charge of JMSPublisher and
JMSSubscriber services. When a client asks the
JMSFactory to create an instance service, the
JMSFactory passes the job to the manager. The
service manager takes care of actually creating a new
JMSPublisher or JMSSubscriber service and receives
an object of type ResourceKey returned from a
service resource home which implements
ResourceHome interface provided by GT WS core.
The ResourceKey is the identifier which we need to
create the endpoint reference returning to the client.
Figure 2 depicts the relationship of the service
manager and the service resource home.

2.2.2 JMSPublisher PortType
JMSPublisherService created from
JMSFactoryService is a transient service responsible

LAN

PFJM

Publisher
PFJM

Subscriber

Multicast

Client

Client

JMS Factory
Service

JMS Factory
Service

JMS Publisher
Service

JMS Subscriber
Service

Fig. 1: Simplified System Architecture

Proceedings of the 5th WSEAS Int. Conf. on DATA NETWORKS, COMMUNICATIONS & COMPUTERS, Bucharest, Romania, October 16-17, 2006 213

to publish messages to a specific Topic. Whenever
clients want to communicate to each other with
reliable messages, the message sender can create a
JMSPublisherService by passing specified topic
name to JMSFactoryService and then utilize the
created JMSPublisherService to publish messages.
More precisely speaking, the JMSPublisherService is
a PFJM instance which actually handles message
sending.

The JMSPublisherService exposes only one
operation, publish, to the public. And the publish
operation has one parameter which is a String object
indicating the sending messages.

2.2.3 JMSSubscriber PortType
As described in Section 2.2.2, JMSSubscriber is also
created from JMSFactoryService and responsible to
subscribe to the specific Topic. When a message
receiver has created a JMSSubscriberService from
JMSFactory Service by passing topic name, it then
could use the JMSSubscriberService to do subscribe
operation. In addition, the message receiver must
implement a NotifyCallback interface which defines
one function called deliver and pass itself to the
subscribe operation of JMSSubscriberService. The
deliver function is the callback function which the
message receiver wants to be called back
asynchronously when messages arrive.

The same as JMSPublisherService,
JMSSubscriberService is a PFJM instance which
actually handles message receiving. In addition to
expose subscribe operation to the public, the
JMSSubscriberService must also implement an
interface, MessageListener, which JMS spec defines
for asynchronously receiving messages.

2.3 Communication Mechanism

2.3.1 Publish Mechanism
Whenever a client wants to publish messages, in the
beginning it must locate the JMSPublisherService by
passing endpoint reference got from
JMSFactoryService to
JMSPublisherAddressingLocator. After locating the
JMSPublisherService, it can call the publish function
exposed by JMSPublisherService to send messages to
a topic. Then JMSPublisherService activates the real
publish operation provided by PFJM instance.

2.3.2 Subscribe Mechanism
Whenever a client wants to subscribe to a topic, it
firstly locates the JMSSubscriber by passing endpoint
reference got from JMSFactoryService to
JMSSubscriberAddressingLocator. After locating the
JMSSubscriberService, it passes itself implementing
NotifyCallback interface as a parameter to the
subscribe function exposed by JMSSubscriberService.
Then the JMSSubscriberService activates the real
durable subscribe operation provided by PFJM
instance.

2.3.3 Delivery Mechanism
As long as messages are sent to Topic, the PFJM core
will invoke the onMessage method which
JMSSubscriberService implements. Then
JMSSubscriberService will invoke the callback
function deliver implemented by the client. Finally
the client will receive the messages.

2.3.4 Recovery Mechanism
Now let’s take a look at how the recovery mechanism
works when the receiver crashes or the network fails
and later the receiver revives again. In JMS lingo,
when a client wants to receive reliable messages, it
must register a durable subscription with a unique
identity also known as subscription name that is
retained by the JMS provider. Subsequent subscriber
objects with the same identity resume the subscription
in the state in which it was left by the previous
subscriber. If a durable subscription has no active
subscriber, the JMS provider retains the
subscription’s messages until they are received by the
subscription or until they expire.

Service
Manager

Service Resource
Home

Client

1. Use resource home to create resource

2. Return a resource key

3. Use the resource key to create an endpoint reference and
return to the client

Fig. 2: Relation between Service Manager and

Resource Home

Proceedings of the 5th WSEAS Int. Conf. on DATA NETWORKS, COMMUNICATIONS & COMPUTERS, Bucharest, Romania, October 16-17, 2006 214

In PFJM WS, the receiver also passes a
subscription name in addition to a topic name to the
JMSFactoryService to register itself. After getting the
EPR of JMSSubscriberService returning from
JMSFactoryService, the receiver can use the EPR to
locate JMSSubscriberService and then subscribe to
the specific topic with the subscription name. Then
the JMS provider will be in charge of sending
messages reliably to the receiver.

If the network fails, the JMS provider will store
the messages published to the topic. Until the receiver
revives with the same topic and subscription name,
the subscription will be reactivated, and the JMS
provider will deliver the messages that are published
while the subscriber is inactive.

3 Programming Styles
In this section, we will discuss GT4 Java WS core and
the integrated system, PFJM WS, which we provide
to support reliable messaging. We will first give a
simple but typical grid service application. Then we
will give scenarios respectively for PFJM WS in
Section 3.2 and for GT4 Java WS core in Section 3.3.
In Section 3.4 and Section 3.5, we will discuss the
detail implementation about using messaging
mechanism respectively for PFJM WS and for GT4
Java WS core. Finally, we will give a discussion
about the comparison of programming styles between
PFJM WS and GT4 Java WS core.

3.1 Simple Grid Service Application
This section uses a simple grid computing example
called divide-and-conquer [16] as demonstration. As
shown in Fig. 3, when the arithmetic grid service
responsible for the four fundamental operations of
arithmetic receives a task, it then divides the task into
two subtasks, a multiplication subtask and a division
subtask. Afterward, the arithmetic grid service will
locate two other grid services respectively responsible
for multiplication and division and dispatch the
divided subtasks to those. After the multiplication and
division grid service finish their operation, they will
pass the results to the arithmetic grid service. Finally
the arithmetic grid service will merge the results and
return to the client.

3.2 Conceptual Scenario in PFJM WS
Here we will use the example in Section 3.1 to

describe how to implement the scenario from PFJM
WS.

As Fig. 4 shows, after a client submits a task to
the Arithmetic Service, the service internally divides
the task into two subtasks and locates two other grid
services responsible for multiplication and division
services. Then the Arithmetic Service being a
publisher dispatches the two subtasks to the
multiplication service and division service being
subscribers.

Once the multiplication and division services
finish their work, they will become publishers and
return the results to the Arithmetic Service being a
subscriber. And the Arithmetic Service will merge the
results and finally return to the client.

3.3 Conceptual Scenario in GT4 Java WS
Core

In GT4 Java WS Core, as shown in Fig. 5, after a
client submits a task to the Arithmetic Service, the
service internally divides the task into two subtasks
and declares two resources, X and Y, standing for the
results of the two subtasks. The Arithmetic Service
also locates two other grid services responsible for
multiplication and division services and dispatches
the two subtasks to them.

Once the multiplication and division services
finish their work, they will utilize the operation
provided by the Arithmetic Service to update the
properties of the resources. While the Arithmetic
Service receives the notification about changing of
resources properties from Java WS core, it finally
merges the results and returns to the client.

Task

a*b

A

divide

c/d

B

dispatch

merge

X+Y

X Y

Fig. 3: A Simple Grid Service Application

Proceedings of the 5th WSEAS Int. Conf. on DATA NETWORKS, COMMUNICATIONS & COMPUTERS, Bucharest, Romania, October 16-17, 2006 215

3.4 Discussion
From the two sets of scenarios mentioned above, we
know that if a client wants to use messaging
mechanism based on GT4 Java WS core, it can
achieve this goal by means of modifying the resource
properties and receiving the notification. This is not
intuitive from the point of view of a programmer
since messages are received passively. Besides, the
API of GT4 Java WS core is complex for a
programmer and a lot of processes must be done by
the client himself. On the contrary, if a client uses
PFJM WS to do message communication, it is not
only reasonable for the point of the view of a
programmer, but the programmer also can use the
API provided by PFJM WS more easily than GT4
Java WS Core.

4 Experimental Results
We have conducted some experiments to investigate
the performance difference between original GT4
Java WS Core and the integrated system, PFJM WS.
During the experiment, we use the FX-05EA 5 Ports
10/100 Mb switching hub to form a local area
network with one notebook and three PCs connecting
to a 100 Mbps Fast Ethernet. Each PC runs Windows
XP with JDK 1.4.2 or 1.5.0.

The experiments are divided into two categories.
The first is one-to-one communication using
notebook as a message sender and PC1 as a message
receiver. The second is one-to-many communication,
using notebook as a message sender and PC1-PC3 as
message receivers.

We use the default setting for PFJM and measure
throughput of different data sizes for GT4 Java WS
core and PFJM WS. For each data sizes, we perform
one hundred times message transmission and
calculate the average throughput in bytes per second.

The results reveal that the throughput of PFJM
WS is better than that of GT4 Java WS core in both
cases. Consequently, if a user wants to use reliable
messaging in GT4 Java WS environment, our PFJM
WS providing a convenient manner and having nice
efficiency is a good choice.

5 Conclusion
In this paper we have presented our approach to
wrapping the internal communication framework in
GT4 Java WS core with a persistent JMS middleware
developed in our laboratory (i.e., PFJM) so as to
provide more reliable messaging and reasonable
programming styles than those in GT4 Java WS Core.
We have also demonstrated that using PFJM WS to
send and receive messages is more efficient.

Grid Env.

Arithmetic
Service

A

B

a*b + c/d
Pub

Sub

Sub

a*b

c/d

Grid Env.

Arithmetic
Service

A

B

Sub

Pub

Pub

X

Y

Fig. 4: Conceptual Scenario in PFJM WS

Grid Env.

Arithmetic
Service A

B

X

Y

a*b + c/da*b

c/d

Grid Env.

Arithmetic
Service A

B

X

Y

X+Y

Fig. 5: Conceptual Scenario in GT4

Proceedings of the 5th WSEAS Int. Conf. on DATA NETWORKS, COMMUNICATIONS & COMPUTERS, Bucharest, Romania, October 16-17, 2006 216

Acknowledgments
This work was partially supported by National
Science Council grant NSC95-2752-E-009-PAE:
advanced technologies and applications for next
generation information networks, grant
NSC94-2213-E-009-026: a research on next
generation massive multiplayer virtual environment
platform, and grant NSC94-2520-S-009-004.

References:
[1] I. Foster, C. Kesselman, J. Nick, and S. Tuecke,

“The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems
Integration,” Open Grid Service Infrastructure
WG, Global Grid Forum, June 22, 2002.

[2] I. Foster, H. Kishimoto, A. Savva, D. Berry, A.
Djaoui, A. Grimshaw, B. Horn, F. Maciel, F.
Siebenlist, R. Subramaniam, and J. Treadwell,
The Open Grid Services Architecture, Version
1.0, J. Von Reich. Informational Document,
Global Grid Forum (GGF), January 29, 2005.

[3] Globus Toolkit, http://www.globus.org/toolkit/
[4] GT 4.0 Java WS Core, http://www.globus.org/

toolkit/docs/4.0/common/javawscore/
[5] Web Services Resource Framework,

http://www.globus.org/wsrf/
[6] K. Czajkowski, DF Ferguson, I. Foster, J. Frey,

S. Graham, I. Sedukhin, D. Snelling, S.Tuecke,
and W. Vambenepe, The WS-Resource
Framework, Version 1.0, March 2004.
http://www.globus.org/wsrf/specs/ws-wsrf.pdf

[7] M. Humphrey, G. Wasson, K. Jackson, J.
Boverhof, M. Rodriguez, Joe Bester, J. Gawor,
S. Lang, I. Foster, S. Meder, S. Pickles, and M.
McKeown, “State and Events for Web Services:
A Comparison of Five WS-Resource
Framework and WS-Notification
Implementations,” Proceedings of the 4th IEEE
International Symposium on High Performance
Distributed Computing (HPDC-14), Research
Triangle Park, NC, July 2005, pp. 3-13.

[8] Steve Graham and Bryan Murray, Web Services
Base Notification 1.2 (WS-BaseNotification),
OASIS Working Draft 03, June 2004.
http://docs.oasis-open.org/wsn/2004/06/wsn-W
S-BaseNotification-1.2-draft-03.pdf

[9] Sun Microsystems, Java Message Service,
Version 1.1, April 2002.

[10] Chuan-Pao Hung, Hsin-Ta Chiao, Yue-Shan
Chang, Tsun-Yu Hsiao, Tzu-Han Kao, and
Shyan-Ming Yuan , “FJM: A Fast Java Message
Delivery Mechanism based on IP-Multicast,”
Proceedings of the 3rd International

Conference on Communications in Computing
(CIC 2002), Las Vegas, June 2002.

[11] Tsun-Yu Hsiao, Nei-Chiun Perng, Winston Lo,
Yue-Shan Chang, and Shyan-Ming Yuan, “A
New Development Environment for an
Event-based Distributed System,” Computer
Standards & Interfaces, vol. 25, no. 4, August
2003, pp. 345-355.

[12] Tsun-Yu Hsiao, Ming-chun Cheng, Hsin-Ta
Chiao, and Shyan-Ming Yuan, “FJM: A High
Performance Java Message Library,”
Proceedings of IEEE International Conference
on Cluster Computing (CLUSTER ’03), Hong
Kong, December 2003, pp. 460-463.

[13] Yu-Fang Huang, Tsun-Yu Hsiao, and
Shyan-Ming Yuan. “A Java Message Service
with Persistent Message,” Proceedings of 2003
Symposium on Digital Life and Internet
Technologies, Tainan, Taiwan, September 2003.

[14] Ruey-Shyang Wu and Shyan-Ming Yuan, “An
Adaptive Architecture for Secure Message
Oriented Middleware,” WSEAS Transactions on
Information Science and Applications, vol. 3, no.
7, July 2006, pp. 1239-1246.

[15] Ruey-Shyang Wu, Kuo-Jung Su, and
Shyan-Ming Yuan, “FJM2: A Decentralized
JMS System,” to be presented in 2nd
International Conference on Trends in
Enterprise Application Architecture
(TEAA2006), Berlin, Germany, November
29-December 1, 2006.

[16] I-Chen Wu and H. T. Kung, “Communication
complexity for parallel divide-and-conquer,”
Proceedings of the 32nd Annual Symposium on
Foundations of Computer Science, San Juan,
Puerto Rico, September 1991, p.151-162.

Proceedings of the 5th WSEAS Int. Conf. on DATA NETWORKS, COMMUNICATIONS & COMPUTERS, Bucharest, Romania, October 16-17, 2006 217

