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Abstract: In this work we develop an on-line algorithm to detect and classify transients produced in capacitor
buses during connection and disconnection. The algorithm was implemented in a Blackfin R© BF-535 Processor.
Transients are modeled as an oscillation modulated in amplitude by an exponential decay. The detection process
consists in detecting the transient’s onset, while the classification consists in measuring the oscillation frequency
and decay parameters. Two validations were performed, one against a database of simulated transients and the
other with a database of experimental signals. In the last case, as no gold standard is available, we assessed the
degree of agreement against an off-line algorithm implemented in a PC. The algorithm performed good in onset
detection, where the absolute error was under 1 ms. Also exhibited good performance in frequency classification,
where the global relative error was under 1.8%. In contrast, the τ parameter classification relative error only
reached an overall range under the 22%. This motivated future improvements in this aspect.
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1 Introduction

The capacitor banks used to correct the power factor
reduce the reactive power increasing the power trans-
mission capacity. In this work we studied oscillatory
transients caused by capacitors switching, specially
the short time and high frequency transients in volt-
age over capacitors buses. The transient frequency
(fO) is between 400 and 2000 Hz, depending on the
ratio between the fault power and the bank capacitor
power. Meaning that this frequency corresponds to
the serial resonance frequency that involves the bank
capacity and the system inductance at the connection
bus. The overshoot voltage varies from 1.3 to 1.8
times but could rise up to 4 times in case that more
capacitors are connected [1]. When a high frequency
overvoltage transient appear, failures on electronic de-
vices, such as PLCs, control systems, measurements
devices, etc, might happen. These problems motivated
the development of an algorithm to detect and analyze
these transients [2]. Once this off-line algorithm is
validated in a PC simulation software like Matlab R©, it
could be ported to another architecture most appropri-
ate to achieve on-line processing, like a DSP proces-
sor, probably in a handheld device. These kind of pro-
cessors have an optimized architecture that fits exactly
in applications that use mathematical and data man-
agement resources intensively [3]. On the other hand,

algorithms implemented in fixed-point DSP proces-
sors requires more development time (for example
than Matlab scripts or C/C++ for PC) mainly because
problems related to finite precision and algorithm val-
idation is not a trivial problem [4]. The objective of
this work is to port an algorithm simulated in Matlab
to a fixed-point DSP architecture, and perform a vali-
dation of its performance.

2 Methods
2.1 Experimental Scheme
In this work we used a signal data base from a pre-
vious work [2]. This data base consists in 27 voltage
signals sampled at 15 kHz, over an inductive load con-
nected to a 2 kVA transformer (with it’s own Joule’s
looses) during the manual connection of a back to
back capacitor bank. The resultant transient over an
industrial frequency voltage carrier, corresponds to a
exponentially decaying oscillation. It was proposed
a simplified model which consists of: oscillation fre-
quency (fO), exponential decay (τ ) and transient’s on-
set (Ton). These signals were transmitted to the DSP,
and the results of the detection and classification pro-
cess were sent back to assess the degree of agreement
with the off-line algorithm, since it was not available
a gold standard measurement about the three parame-
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ters.
Due to wide bandwidths and short lengths of elec-

trical transients under study, the wavelet transform
was used.

2.2 Wavelet Transform Analysis

The algorithm implemented in this work is based on
the well known wavelet transform (WT) under a mul-
tiresolution scheme (MR)[5]. The WT is a powerful
tool to detect short transients and discontinuities in
continuous signals, like power line signals. MR can
be performed with Mallat’s algorithm[6], which is a
fast implementation based on digital (decomposition)
filters followed by dyadic decimators (Fig. 1).
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Figure 1: Decomposition and reconstruction filter
blocks.

Those decomposition and recomposition filters
belong to the Daubechies’s wavelets (Daub) families.
The low pass output can be followed by another sec-
tion as many times as needed, obtaining one succes-
sive detail Dn (high pass output) and approximation
coefficients Sn(low pass output) (Fig. 2). The inverse
wavelet transform (iWT) is performed in a reciprocal
manner, dyadic interpolators followed by digital (re-
construction) filters (Fig. 1). The analysis consists of
the localization of events in time at different decreas-
ing dyadic frequency bands.

As the frequency bands become narrower, time
uncertainty increases and vice versa (Fig. 3). Tran-
sients studied in this paper correspond to high fre-
quency ranges (f > 375Hz).
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Figure 3: Time-frequency plane showing the trade
off relation between time and frequency resolution in
wavelets analysis. We used FN for Nyquist frequency,
and N for filter kernel size. Horizontal arrows show
the translation in time of the time-frequency window
in dyadic steps.

2.3 Wavelet Selection Criteria
When the aim of an algorithm is transient’s detection,
a convenient balance between computational burden
and time resolution is found with wavelets Daub4 and
Daub6 [2]. However those wavelets do not provide re-
liable information about waveform characteristic (pat-
tern recognition) because of its lack of frequency res-
olution.

The lower the filter kernel is, the better the reso-
lution in time, but the worst resolution in frequency.
As an example, Fig. 4 shows in dash line the Daub4

(8 coefficients) and in solid line the Daub10 (20 co-
efficients) wavelet’s frequency response (FR). The
downslope measured from the frequency where the
FR is equal to -3 dB is 70 dB/decade for Daub4, while
170 db/decade for Daub10.

The Daubechies’s wavelets from Daub4 to
Daub14 were tested against 280 simulated transients,
based on 10 realizations of 7 fO steps and 4 different
τ with the off-line algorithm. The τ parameter was
measured using a statistical tool known as pseudoin-
verse [7], which fits an exponential decay with least
mean square (LMS) error. The reliability of pattern
recognition is imposed by the time-frequency resolu-
tion which belongs to the chosen wavelet. The most
suitable wavelet is the one which achieves minimum
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Figure 2: Multiresolution scheme using decomposition and reconstruction blocks (figure 1). The details Dn and
the last approximation Sn are shown in the center of the scheme within a box.
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Figure 4: Daub4 and Daub10 Frequency Response

square error in τ measurement. The LMS error vs.
Daubi families results are shown in Fig. 5, having fO

as parameter. As can be seen in this figure, Daub10

provide the most reliable τ measurement along the
whole range of transients.
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Figure 5: Performance of Daubechies wavelets mea-
suring τ parameter.

2.4 Algorithm description

The Ton detection is performed by thresholding the
smaller detail levels, where the time resolution is
higher (Fig. 3). This threshold can be adapted to dif-
ferent signal to noise ratio (SNR) scenarios. Once the
transient was detected, reconstruction is performed
with higher frequency coefficients (f > 375Hz) dis-
carding the last approximation (f < 375Hz). By this
manner, most of the transient’s energy is separated
from the power line signal and ready to be classified.

The measurement of τ was performed by detecting the
relative maxima modulus values of the oscillation, and
then performing an ad-hoc fitting algorithm that iter-
atively minimize the square error. After that, fO is
measured by averaging the intervals between relative
maxima modulus of the same sign.

2.5 Algorithm Validation
The MR algorithm validation was done in Matlab, us-
ing the Fixed Point Toolbox, and contrasted against
Wavelets Toolbox functions. We started implement-
ing MR algorithm in Matlab in order to minimize as
much as possible debugging in the DSP environment.
It means that any Matlab specific feature was avoided,
trying to code scripts as similar as C language as pos-
sible. This eased the posterior language translation
process. Once algorithm reached a stable version in
the DSP platform, we need to validate the correct be-
havior and study error distribution in detection and
classification process. Those steps are entirely related
each other, and were carried out together. Error anal-
ysis was studied with simulated transients that were
transmitted with a PC to the DSP. Once detection and
classification process finished, results were sent back
to the PC for statistical analysis. This process was
repeated for the whole frequency range from 400 to
2000 Hz in steps of 100 Hz, with durations from 3
to 15 periods of the corresponding frequency (1.5 to
37.5 ms). This kind of parameterization was adopted
since the classification algorithm strongly depends on
the amount of detected cycles. The beginning of each
transient was determined by a uniformly distributed
random function, to test the algorithm’s performance
in a wide range of situations.

2.6 DSP Processor
It was used an Analog Devices (AD) Blackfin R©

BF535 to develop the algorithm. Blackfin DSP pro-
cessors (DSP) have most important and powerful fea-
tures of modern DSP’s, like dual 16 bits multiply
and accumulators (MACs), 40 bits arithmetic and
logic unit (ALUs), data address generators (DAGs),
direct memory access (DMA) peripheral controller,
cache memory organized in two layers, and a RISC
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pipelined architecture clocked at 500Mhz [3]. Before
start working with the DSP development environment
(AD Visual R© DSP++ 4.0 IDDE), the detection algo-
rithm was simulated with Matlab’s Fixed Point Tool-
box. Then Matlab scripts were translated into C lan-
guage, a supported language in VDSP++. We used
BF535 EZ-Kit Lite for firmware development in com-
bination with VDSP++ IDDE. The DSP algorithm
could be controlled through a serial (RS-232) terminal
either by a human operator or an external device, like
a PC. The DMA controller managed the RS-232 serial
controller in order to free the Blackfin core from this
work. The result was that the core took care only of
data processing and management tasks, reducing dras-
tically overhead work. For data processing purposes
all architectural features of the core were used via
built-in functions implemented in C language. Those
built-in functions are available in the VDSP++ Run-
Time library.

2.7 Statistical Analysis
We used Bland and Altman method [8] to study the
agreement between the simulated off-line algorithm
and the real-time implementation, since we did not
know the actual values to be measured (gold stan-
dard). In order to express the limits of agreement,
we analyzed first the normality of the difference be-
tween methods with Kolmogorov-Smirnov test [9].
For normal distributions we used two standard devi-
ations (SD) from the mean of the differences as limit
of agreement. While for not normal distributions we
used a scheme similar to boxplot, upper and lower
whiskers as limits of agreement. Upper and lower
whiskers are calculated as 1.5 times the distance be-
tween quartile 75 and 25, away from the median.

3 Results

3.1 Simulation Results
The results of the simulation are summarized in Fig.6.
For transients longer than 3 periods the median of the
fO relative errors was under 1%, since for shorter tran-
sients this reached the 3.5% (Fig. 6). The same hap-
pened with τ parameter, reaching a maximum relative
error of 45% for short transients and less than 15% for
longer transients. The onset detection was achieved in
all cases with an absolute error smaller than 1 ms. In
tables 1 and 2 the error distributions are showed in
more detail for fO and τ parameters. The relative er-
ror is under 1.8% in the whole range for fO parameter,
but for τ parameter in the same range the relative error
is under the 22%.

3.2 Experimental Results
The degree of agreement between on-line and off-line
implementations is shown in figure 7 for τ and fO pa-
rameters. As can be seen in the τ parameter panel, the
degree of agreement is very low since the distance be-
tween limits of agreement is large respect to the mean
of the measurements. Whereas in the frequency panel
the agreement rises, as the distance of agreement de-
creases.
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Figure 7: Bland and Altman plots shows the degree
of agreement between experimental results obtained
with on-line and off-line algorithms. As none of the
difference datasets presented a normal distribution,
median is shown in dash dotted line and limits of
agreement in dotted lines.

4 Conclusion
In this work we validated a real-time implementation
of an algorithm developed for detection and classi-
fication of electric transients. The transient’s object
detection was achieved with less than 1 ms of error,
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Figure 6: Relative error as a function of transient duration and frequency. For longer transients the error decreases
asymptotically, as well as for lower fO.

this feature makes it very useful for fail logging pur-
poses. The fO parameter is measured with a relative
error smaller than 3.5% during simulation. This er-
ror is strongly correlated with transient’s length (Fig.
6), is quite simple to note that as the amount of peri-
ods increases the algorithm has more data to measure,
and better measurements are made. This is applicable
for τ parameter in the same manner, but the classifica-
tion performance of this parameter is by far the worst
(table 2). We used the pseudoinverse method in the
off-line algorithm, and as can be seen in table 2, the
τPs parameter achieves better performance for shorter
transients. Error ranges obtained were acceptable but
since the model of transient used in our simulation
was very simple, actual performance was somewhat
worst. In the experimental analysis, important dis-
crepancies were seen when measuring the τ param-
eter. This was caused mainly by limitations of the on-
line fitting algorithm and the transient model. This

limitation can be improved by making better model of
transient and an ad-hoc measurement algorithm, like
pseudoinverse method. In spite of algorithm and tran-
sient’s model simplicity, the results discussed before
are satisfactory enough as a first solution.

5 Limitations and future works
The inherent limitation of the WT is in its intrinsic na-
ture, since it is a time-frequency transform, a memory
buffer is necessary to be sampled in order to be per-
formed. So the algorithm on line response is limited
to the time required to fill a buffer. The smaller the
time to fill an observation buffer, the higher on-line
response of the algorithm but the poorer the capability
of long transients classification. As it can be seen, the
transients duration range to be analyzed, the on-line
response of the algorithm and the memory and pro-
cessing performance of the DSP are related in a trade-

Proceedings of the 6th WSEAS International Conference on Wavelet Analysis & Multirate Systems, Bucharest, Romania, October 16-18, 2006       15



Table 1: Summary of the measurements error for fO, τ and Ton for different transient frequencies in the range
from 400 to 2000 Hz. The table shows the relative error for fO and τ parameter, while the absolute error for Ton,
expressed in ms. In all cases lower whisker (LW), median (M) and upper whisker (UW) are respectively shown for
each condition.

Transient Frequency Range (Hz)
400-700 700-1400 1400-2000 400-2000

LW M UW LW M UW LW M UW LW M UW

fO 0.0 0.2 0.8 0.0 0.3 1.6 0.0 0.4 2.1 0.0 0.3 1.8
τ 0.3 6.0 17.1 0.0 3.6 14.1 0.0 6.1 38.7 0.0 5.2 21.6

Ton (ms) 0.5 0.5 0.7 0.7 0.8 0.8 0.3 0.8 0.8 0.4 0.7 0.8

Table 2: Summary of the measurement error for fO, τ and Ton for different transient durations in the range from 1.5
to 37.5 ms. The table shows the relative error for fO and τ parameter, while the absolute error for Ton, expressed
in ms. The τPs parameter is measured with the pseudoinverse method. In all cases lower whisker (LW), median
(M) and upper whisker (UW) are respectively shown for each condition.

Transient Duration Range (# periods)
3 6-9 12-15 3-15

LW M UW LW M UW LW M UW LW M UW

fO 0.0 2.1 3.9 0.0 0.4 1.1 0.0 0.1 0.5 0.0 0.3 1.8
τ 0.8 16.0 44.0 0.0 5.6 20.0 0.0 2.6 9.9 0.0 5.2 21.6

τPs 0.4 5.8 22.6 0.5 7.2 17.6 2.2 5.7 14.1 0.4 6.0 20.0
Ton (ms) 0.6 0.8 0.8 0.6 0.8 0.8 0.1 0.5 0.8 0.4 0.7 0.8

off relation. In this work we limited the time observa-
tion window to 2048 samples. It means that informa-
tion is updated at a 7 Hz rate and the maximum tran-
sient duration is 100 ms (5 periods of 50Hz). As future
improvements to this work we will study the effect of
lifting scheme to improve algorithm’s speed, the use
of pseudoinverse fitting method to improve τ classifi-
cation accuracy, another methods of transient’s spec-
tral content measurement like FFT, and a more general
transient model to take into account other sources of
perturbations.

Acknowledgements: This work was partially sup-
ported by Fundación Antorchas and Semak S.A., Ar-
gentina.

References

[1] Fehr R. The Trouble with Capacitors, December
2003. URL www.ecmweb.com.
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