A novel time method for the simulation of the analog circuits driven by multi-tone signals

MIHAI IORDACHE, LUCIA DUMITRIU, CATALINA POPESCU

Electrical Engineering Department
“Politehnica” University of Bucharest
Spl. Independentei 313, Cod 06 0042, Bucharest
ROMANIA

Phone/Fax (+4021) 318 10 16

Key words: Multiple time variables, Radio frequency analog circuit analysis.

The paper presents a new version of state variable method for circuit analysis with widely separated time scales. Widely-separated time scales appear in many electronic circuits, making traditional analysis difficult or impossible if the circuits are highly nonlinear. The key idea is to use multiple time variables, which enable signals with widely separated rates of variation to be represented efficiently. The differential algebraic equations (DAEs) describing the RF-IC circuits are transformed in multi-time partial differential equations (MPDEs). The time domain method presented in this paper is suitable for signals whose every component is influenced strong nonlinearities. Significant computation and memory result from using the new numerical technique. In order to solve MPDE we use the associated resistive discrete equivalent circuits (companion circuits) for the dynamic circuit elements.

1. Introduction

A very important step in the design of radio-frequency integrated circuits (RF-IC) is circuit simulation. A typical RF-IC application has carrier frequencies in the GHz-range with modulating signals in the kHz-range. Due to the broad signal spectrum (about six orders of magnitude) finding of the steady-state by the brute-force method is very time consuming [1, 2]. These signals are called multirate signals, and they contain “components” that vary at two or more widely separated rates. Such signals arise in various physical systems, as communication circuits (up/down-converters, automatic gain-control circuits), cycle-chopping and switched power converters, switched-capacitor filters, pulsewidth-modulation circuits etc. These systems are typically difficult to analyze using traditional numerical integration algorithms, such as those used in programs like SPICE [1]. The difficulty consists in the widely disparate rates: following fast-varying signal components long enough to obtain information about the slowly-varying ones is computationally expensive, and can also be inaccurate.

Many multirate signals, especially from circuits, can be represented efficiently as functions of two or more time variables, i.e. as multivariate functions. If a circuit is described with differential-algebraic equations (DAE), using multivariate functions for the unknowns leads naturally to a partial differential equation (PDE) form, which is called Multirate Partial Differential Equation (MPDE). If we apply time-domain numerical methods to solve the MPDE directly for the multivariate forms of the unknowns, we are able to analyze the combination of strong nonlinearities and multirate signals.

In the case of the lumped analog nonlinear circuits, because the numerical differentiation is a relatively inaccurate operation, we approximate the characteristic of each nonlinear capacitor and the characteristic of each nonlinear inductor by piecewise-linear segments. In order to simplify the description of nonlinear resistors, their $v-i$ characteristics may be approximated by piecewise-linear continuous curves, or by new characteristics in which the nonlinearities are transferred to the sources, [7 - 9, 10 - 12]. Using the state equations (SEs) in partially symbolic form, we obtain a significant efficiency in circuit design and an improvement of the accuracy in the numerical calculations by considering as symbols only the parameters corresponding to the nonlinear circuit elements.

The State Equations (SE) and the output equation for lumped piecewise-linear nonlinear analogue circuits have the following form [11-13]:

$$\dot{x} = Ax + By + B_1 \dot{y},$$

(1)
where: the matrices A, B and B_1 containing the incremental capacitances, the incremental inductances, the incremental resistances and the incremental conductances corresponding to the nonlinear circuit elements, $x(t) = \left[v_{Ct}^1, i_{Lc}^1 \right]^T$ is the state variable vector (v_{Ct} - the tree branch capacitor voltages and i_{Lc} - the link inductor currents) with $x_0 = x(t_0)$ initial condition; $y = \left[e^T, j^T \right]^T$ is the input vector, and the superscript “T” denotes the transpose.

If the analyzed circuit exhibits multirate behaviour, its variables can be represented efficiently using multiple time variables. If there are p multivariate forms of change, p time-scales are used. We denote the multivariate forms of $x(t)$ and $y(t)$ by $\hat{x}(t_1, ..., t_p)$ and $\hat{y}(t_1, ..., t_p)$.

The MPDE corresponding to (1) is:

$$\frac{\partial \hat{x}}{\partial t_1} + ... + \frac{\partial \hat{x}}{\partial t_p} = A\hat{x} + B\hat{y} + B_1 \left(\frac{\partial \hat{y}}{\partial t_1} + ... + \frac{\partial \hat{y}}{\partial t_p} \right). \quad (2)$$

In [1] it is shown that there is a relation between the MPDE and the SEs of the circuit. According to the theorem 1 from [1] the solutions of the SEs are available on “diagonal” lines along the MPDE multivariate solutions.

Because the SEs are easy implemented in a program, we use these equations to obtain numerical solution of the MPDE. Replacing each capacitor and each inductor (magnetic coupled or not) by a discrete resistive circuit model associated with an implicit numerical integration algorithm, the transient analysis of nonlinear circuit can be reduced to the dc analysis of a sequence of equivalent nonlinear resistive circuits [4-7, 11, 12]. By using the backward differential formula of high order, the efficiency is achieved without compromising accuracy.

2. Method description

Considering the two-rate case, MPDE (2) becomes:

$$\frac{\partial \hat{x}}{\partial t_1} + \frac{\partial \hat{x}}{\partial t_2} = A\hat{x} + B\hat{y} + B_1 \left(\frac{\partial \hat{y}}{\partial t_1} + \frac{\partial \hat{y}}{\partial t_2} \right), \quad (3)$$

with the periodic boundary conditions (BCs) $\hat{x}(t_1 + T_1, t_2 + T_2) = \hat{x}(t_1, t_2)$. We consider a uniform grid $\hat{r}(i,j)$ of size $(p_2+1) \times (n_1+1)$ on the rectangle $[0, T_2] \times [0, m_1T_1]$ (Fig. 1). Here $\hat{r}(i,j) = \{ t_2, i_j \}$, $t_2 = (i-1)h_2p_2 = (i-1)\gamma_2$ (at each integration step h_1 we perform p_2 integrations with size step h_2), $t_1 = (i-1)h_1$, $1 \leq i \leq p_2 + 1$, $1 \leq j \leq n_1 + 1$, $h_1 = m_1T_1 / n_1 = T_1 / p_1$ and $h_2 = T_2 / p_2$ are the grid spaces in the directions t_1 and t_2 respectively. We consider that the slow components of $\hat{y}(t)$ and $\hat{x}(t)$ depend on t_1 and the fast components of $\hat{y}(t)$ and $\hat{x}(t)$ depend on t_2.

In order to integrate the state equation (15) we use the backward-differentiation formula (BDF) [22], which approximates to within prescribed accuracy the present value $\hat{x}(t_{n+1})$ of the time derivative of $\hat{x}(t_{n+1})$ in terms of x_{n+1} and p past values $x_n, x_{n-1}, ... x_{n-p+1}$:

$$\hat{x}_{n+1} = \frac{1}{h} \sum_{k=0}^{p} a_k x_{n+1-k} = \frac{1}{h} \left(x_n - x_o \right), \quad (4)$$

where: $a_0, a_1, ..., a_p$ are parameters, $h = t_{n+1} - t_n$ is the present step size, $x_n = a_0x_{n+1}$ is the new value of x.

We can also use the following numerical implicit integration algorithms: the trapezoidal algorithm and the Gear’s algorithm.

For the first periods T_1 and T_2 (corresponding to the grid of size $(p_2 + 1) \times (p_1 + 1)$), we assume that the BCs are: $\hat{x}(i,1) = 0.0$, $i = 1, p_2 + 1$, and $\hat{x}(i,j) = 0.0$, $j = 1, 2$ and $\hat{x}(i,j) = \hat{x}(p_2 + 1, j)$. $j = 2, p_1 + 1$, on the column $t_1 = 0$, and on the row $t_2 = 0$ respectively. We start the integration process on the column 2 from the point $\hat{r}(2,0) = \{ t_2, t_1 \}$, with $t_2 = h_2, t_1 = h_1$ on the column 2 (in respect of the fast time t_2) from the row 2 to the row p_2+1 and so on till we arrive in the point $\hat{r}(p_2 + 1, 2) = \{ t_2, t_1 \}$, with $t_2 = h_2, t_1 = h_1$. After that, we integrate one time step h_1 in respect of the slow time t_1 (in this point we assign to $\hat{x}(t_1)$ the value of $\hat{x}(t_1)$) and then we again start the integration process on the column 3 (in respect of the
fast time t_2) from the row 2 to the row p_2+1 and so on till we arrive in the point $\mathcal{I}(p_2+1, p_1+1)=\{t_2, t_1, p_2+1\}$,

with $t_{2,p_2+1}=p_1T_2=p_1T_2$ (at each integration step h_1
we perform p_2 integrations with size step h_2) and

$t_{1,p_2+1}=p_1h_1=T_1$

Remark 1. Before of the passing to the integration
for the next periods T_1 and T_2 (corresponding to the
grid of size $(p_2+1)\times(n_1+1)$), which it starts from
the point $\mathcal{I}(2, p_1+1)=\{t_2, t_1, p_1+1\}$, with

$t_{2_1} = p_1p_2b_1 + h_2 = p_1T_2 + h_2$

and

$t_{1,p_2+1} = (p_1 + 1)h_1 = T_1 + h_1$, we must consider
the following boundary conditions:

$\hat{x}(t, p_1 + 2) = \hat{x}(p_2 + 1, p_1 + 1)$ and

$\hat{x}(t, p_1 + j + 1) = \hat{x}(p_2 + 1, p_1 + j)$, $j \geq 2, p_1 + 1$ on the row

and $\hat{x}(i, p_1 + 1), i = 2, p_2 + 1$ on the column $t_1 = T_1$.

After that, it is performed an integration with the
integration step h_1 in respect of the slow time t_1 from
the point $\mathcal{I}(p_2+1, p_1+1)$ to the point $\mathcal{I}(2, p_1+2)$ (in this
point we assign to $\hat{x}(l, p_1 + 2)$ the value of $\hat{x}(p_2 + 1, p_1 + 1)$) (see Fig. 1).

Proceeding in this way for the other periods T_1 and T_2 we shall integrate the MPDE on the whole uniform
grid of size $(p_2+1)\times(n_1+1)$, when we arrived in the point $\mathcal{I}(p_2+1, n_1+1)=\{t_2, t_1, n_1+1\}$, with

$t_{2,p_2+1}=p_2h_2m_1p_1 + m_1p_1T_2 = n_1T_2$ (because at each
integration step h_1 we perform p_2 integrations with size step h_2), and

$t_{1,n_1+1}=n_1h_1 = m_1p_1h_1 = m_1T_1$.

At each time moment $\mathcal{I}(i, j)$ we have to solve a
nonlinear algebraic equation system. For this, we can
use the Newton-Raphson algorithm or other efficient
numerical iteration algorithms [1-7, 13].

The discrete resistive circuit equations, associated
with the BDF of the first order ($a_0 = 1$ and $a_1 = -1$)
when the characteristics of the nonlinear elements are
approximated by piecewise-linear continuous curves,
at $\mathcal{I}(i, j)$ (with $t_{2i} = (i-1)h_2 + (j-1)T_2$ and
$t_{1j} = (j-1)h_1$) (at each integration step h_1 we perform
p_2 integrations with size step h_2), and at the $(k+1)^{th}$
iteration of the Newton-Raphson algorithm, corresponding to the state equations (4), have the following form:

$$\frac{1}{h_1}(x_{n} - x_{-o}) + \frac{1}{h_2}(x_{n} - x_{-o}) = Ax_{n} + By_{n} + B_{1}$$

where: $x_{n}=x(i, j)$ is the new value of state vector x
at $\mathcal{I}(i, j)$, $x_{-o}=x(i, j-1)$ ($x_{-o}=x(i-1, j)$) is the
“old” value of state vector x at the moment $\mathcal{I}(i, j-1)$
(at the moment $\mathcal{I}(i-1, j)$). $y_{n}=y(i, j)$ is the new
value of input vector y at $\mathcal{I}(i, j)$, $y_{-o}=y(i, j-1)$
($y_{-o}=y(i-1, j)$) is the “old” value of input vector y
at the moment $\mathcal{I}(i, j-1)$ (at the moment $\mathcal{I}(i-1, j)$).

The vectors: $y(i, j)$, $y(i, j-1)$ and $y(i-1, j)$ represent
the contributions of the excitation sources (independent current and voltage sources), of the sources corresponding to the approximations of nonlinear resistors and the initial values of the inductor currents and of the capacitor voltages which are determined from previous time steps $\mathcal{I}(i-1, j)$ of the
slow time t_1, and $\mathcal{I}(i, j-1)$of the fast time t_2. The
subscripts (i, j), $(i, j-1)$, $(i, 1)$ and $(i-1, 1)$ represent
the time moments.

The structure of the equations (5) leads to the
elimination of the state variable that appears in the

![Fig. 1. A uniform grid \(\{ \mathcal{I}(i, j) \} \) of size \((p_2+1)\times(n_1+1)\).](image)
least number of state equations. Elimination procedure is equivalent to substituting the variable involving in the smallest number of equations and removing the equation involving the smallest number of variables (one of which is the variable to be eliminated) in the state equations (5). According to this rule, we select the state equations corresponding to the eliminated state variables and introducing them in the remained state equations, we obtain the state equations in the normal form for the remained state variables. These state equations have as symbols the old values of all state variables and time step size. The remained state equations can easy be integrated to obtain the circuit response. With this approach we obtain important savings in computing time and memory.

The algorithm for large-scale circuit decomposition, and the method to systematically formulate the state equations in partially symbolic normal-form for linear and/or nonlinear time-invariant large-scale analog circuits with excess elements, was implemented in SYSEG – SYmbolic State Equation Generation- program [11].

3. Examples

In Fig. 2 is shown the equivalent circuit for the TV video-frequency circuit. The voltage-controlled nonlinear resistor R_{13} is modeled by an equivalent scheme corresponding to the approximation of the v-i characteristic by a continuous piecewise linear curve:

$$
U_{13} \quad V \quad -1000.0 \quad 0.0 \quad 100.0
$$

$$
I_{13} \quad mA \quad -1.0 \times 15 \quad 0.0 \quad 10.0 \quad 1000.0 \quad 0
$$

The state vector has the following structure:

$$
X = [UC5, UC6, UC7, UC8, UC9, IL22, IL23, IL24, UC2, UC3, UC4]
$$

The state equations have the form:

$$
\text{Rem}_\text{st}_\text{eqs} = \{1.500*UC8_n-.5000*UC8_o1-1.000*UC8_o2=\ldots
$$

The eliminated state variables are:

$$
\text{El}_\text{st}_\text{vars} = [UC5, IL22, IL23, IL24, UC9, UC3]_{123}
$$

The remained state equations in partially-symbolic normal form, when we consider as symbols the input vector, the “old” value of state variables and the associated parameters to the nonlinear circuit elements, (the full symbolic form can be obtained, but it is a very large expression) of the circuit in Fig. 2, have the form:

$$
\text{Rem}_\text{st}_\text{eqs} = \{1.500*UC8_n-.5000*UC8_o1-1.000*UC8_o2=\ldots
$$

$$
$$

$$
+1.500*UC6_n-.5000*UC6_o1-1.000*UC6_o2=-1.268e-2*e1-1.066e-1*UC5_o1
$$

$$
+1.500*UC3_n-.5000*UC3_o1-1.000*UC3_o2
$$

$$
+1.500*UC2_n-.5000*UC2_o1-1.000*UC2_o2
$$

$$
= 0.8335e-2*UC2_n-.5000/R_{du13}*UC2_n-.5000/UC2_o1}
$$

$$
= 0.1006e-1*UC8_n-.7525e-3*UC7_n-.1261e-1*IL23_o1
$$

$$
+0.3327e-2*UC9_o1
$$

$$
+1.500*UC7_n-.5000*UC7_o1-1.000*UC7_o2-3.074e-1*UC7_n+.1960e-1*IL23_o1+.3922e-1*IL23_o2+.1170e-2*UC6_n
$$

$$
+1.500*UC2_n-.5000*UC2_o1-1.000*UC2_o2
$$
If we assume that the input signal \(e_1(t) \) has the following expression:
\[
e_1(t) = (1.0 + 0.9 \sin(2\pi f_{MA} t)) \sin(2\pi f_0 t) \text{ V},
\]
where \(f_{MA} = 4 \text{ MHz}, \ f_0 = 400 \text{ MHz} \)
and was plotted in Fig. 3.

The bi-variate excitations have the expressions:
\[
\dot{e}_1(t_1, t_2) = (1.0 + 0.9 \sin(2\pi f_{MA} t_1)) \sin(2\pi f_0 t_2) \text{ V},
\]
and was plotted in Fig. 3.

Using the method presented in Section 2 the variations of the capacitor voltages \(v_{C2}, v_{C8} \) and the

inductor current \(i_{L21}, \) in respect to the time, are shown in Figures 4, 6, and 8, respectively, in a representation with two-time variables and in Figures 7, 8, and 9, respectively, in a one-time variable representation.
Consider the diode mixer shown in Fig. 10. The input single-time singles have the following expressions:

\[v_1(t) = 0.01\sin(2\pi 9.9510^6 t)\], \[v_2(t) = 2\sin(2\pi 10^6 t)\].

Using the method presented in Section II the variation output voltage \(u_{C6} \) with respect to time is shown in Fig. 11.
4. Conclusion

An efficient numerical approach for analyzing strongly nonlinear multirate circuits has been presented. The procedure uses multiple time variables to describe multirate behaviour, leading to a PDE called the MPDE. Applying appropriate BCs to this MPDE and using the state equations lead to quasi-periodic and envelope-modulated solutions. By using the backward differential formula of high order, the efficiency is achieved without compromising accuracy. Presenting the results in three-dimensional form is useful for visualizing waveforms with widely separated time scales (as in the case of RF-IC). The new technique can solve a variety of circuits that are hard to simulate with a mix of strong and weak nonlinearities.

Acknowledgment

This research is financed from CNCSIS grant – C38.

References

