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Abstract: Cellular automata (CA) are considered to be
a non-linear model of complex systems in which an infi-
nite one-dimensional array of finite state machines (cells)
updates itself in a synchronous manner according to a
uniform local rule. We study a sequence generation prob-
lem on a special restricted class of cellular automata hav-
ing 1-bit inter-cell communications (CA1−bit) and pro-
pose several state-efficient real-time sequence generation
algorithms for non-regular sequences.

Key words: cellular automaton, sequence generation
problem

1 Introduction

Cellular automata (CA) are considered to be a non-
linear model of complex systems in which an infinite one-
dimensional array of finite state machines (cells) updates
itself in a synchronous manner according to a uniform lo-
cal rule. We study a sequence generation problem on a
special restricted class of cellular automata having 1-bit
inter-cell communications (CA1−bit) and propose several
state-efficient real-time sequence generation algorithms
for non-regular sequences. The 1-bit CA can be thought
to be one of the most powerless and simplest models in
a variety of CAs. First, in section 2, we introduce a cel-
lular automaton with 1-bit inter-cell communication and
define the sequence generation problem on CA1−bit. In
section 3, it is shown that infinite non-regular sequences
such as {2n|n = 1, 2, 3, ..} and Fibonacci sequences can
be generated in real-time by cellular automata with 1-
bit inter-cell communication. Those sequence genera-
tion algorithms will be realized on the 1-bit CAs with
a relatively small number of internal states. It is also
shown that an infinite prime sequence can be generated
in real-time by a cellular automaton having 1-bit inter-
cell communications (CA1−bit). The algorithm presented
is based on the classical sieve of Eratosthenes, and its im-
plementation will be made on a CA1−bit using 34 internal
states and 71 transition rules.

C1 C2 C3 C4 Cn

Figure 1: A one-dimensional cellular automaton with 1-
bit inter-cell communication.

2 Sequence generation problem

on CA1−bit

A one-dimensional 1-bit inter-cell communication cellu-
lar automaton consists of an infinite array of identical
finite state automata, each located at a positive integer
point (See Fig. 1). Each automaton is referred to as
a cell. A cell at point i is denoted by Ci, where i ≥ 1.
Each Ci, except for C1, is connected to its left- and right-
neighbor cells via a left or right one-way communication
link. These communication links are indicated by right-
and left-pointing arrows in Fig. 1, respectively. Each
one-way communication link can transmit only one bit
at each step in each direction. One distinguished left-
most cell C1, the communication cell, is connected to
the outside world. A cellular automaton with 1-bit inter-
cell communication (abbreviated by CA1−bit) consists of
an infinite array of finite state automata A = (Q, δ, F ),
where

1. Q is a finite set of internal states.

2. δ is a function, defining the next state of any
cell and its binary outputs to its left- and right-
neighbor cells, such that δ: Q × {0, 1} × {0, 1} →
Q × {0, 1} × {0, 1}, where δ(p, x, y) = (q, x′, y′), p,
q ∈ Q, x, x′, y, y′ ∈ {0, 1}, has the following mean-
ing. We assume that at step t the cell Ci is in state
p and is receiving binary inputs x and y from its left
and right communication links, respectively. Then,
at the next step, t+1, Ci assumes state q and out-
puts x′ and y′ to its left and right communication
links, respectively. Note that binary inputs to Ci

at step t are also outputs of Ci−1 and Ci+1 at step
t. A quiescent state q ∈ Q has a property such that
δ(q, 0, 0) = (q, 0, 0).
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3. F ⊆ Q is a special subset of Q. The set F is used
to specify a designated state of C1 in the definition
of sequence generation.

Thus, the CA1−bit is a special subclass of normal (i.e.,
conventional) cellular automata. We now define the se-
quence generation problem on CA1−bit. Let M be a
CA1−bit, and let {tn|n = 1, 2, 3, ...} be an infinite mono-
tonically increasing positive integer sequence defined for
natural numbers, such that tn ≥ n for any n ≥ 1. We
then have a semi-infinite array of cells, as shown in Fig.
1, and all cells, except for C1, are in the quiescent state at
time t = 0. The communication cell C1 assumes a special
state r in Q and outputs 1 to its right communication
link at time t = 0 for initiation of the sequence generator.
We say that M generates a sequence {tn|n = 1, 2, 3, ...}
in k linear-time if and only if the leftmost end cell of M
falls into a special state in F ⊆ Q and outputs 1 via its
leftmost communication link at time t = ktn, where k is
a positive integer. We call M a real-time generator when
k = 1.

3 Real-time generation of non-

regular sequences

Arisawa[1], Fischer[3] and Korec[4] studied real-time
generation of a class of natural numbers on the con-
ventional cellular automata, where O(1) bits of informa-
tion were allowed to be exchanged at one step between
neighboring cells. In this section we propose several 1-bit
communication cellular algorithms which generate non-
regular infinite sequences in real-time. The first sequence
we consider is {2n|n = 1, 2, 3, ..}.

3.1 Sequence {2n|n = 1, 2, 3, ..}
We show that the context-sensitive sequence {2n|n =
1, 2, 3, ...} can be generated in real-time by a 1-state
CA1−bit. A transition rule set for the CA1−bit M gen-
erating the sequence is as follows: M = {Q, δ}, where
Q = {a, q},

δ(a,0, 0) = (a,0, 0), δ(a,0, 1) = (a,1, 0),
δ(q, 0, 0) = (q, 0, 0), δ(q, 0, 1) = (q, 1, 1),
δ(q, 1, 0) = (q, 1, 1), δ(q, 1, 1) = (q, 0, 0).

The leftmost cell C1 always assumes a state a and Ci(i ≥
2) takes a state q at any step. Figure 2 shows some
snapshots for the real-time generation of the sequence.
Small black right and left triangles � and �, shown in
Fig. 2, indicate a 1-bit signal transfer in the right or left
direction between neighbour cells. A symbol in a cell
shows its internal state.
[Theorem 1] An infinite sequence {2n|n = 1, 2, 3, ..}
can be generated by a 1-state CA1−bit in real-time.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

0 a q q q q q q q q q q q q q q q q q q q q q q q q q q

1 a q q q q q q q q q q q q q q q q q q q q q q q q q q

2 a q q q q q q q q q q q q q q q q q q q q q q q q q q

3 a q q q q q q q q q q q q q q q q q q q q q q q q q q

4 a q q q q q q q q q q q q q q q q q q q q q q q q q q

5 a q q q q q q q q q q q q q q q q q q q q q q q q q q

6 a q q q q q q q q q q q q q q q q q q q q q q q q q q

7 a q q q q q q q q q q q q q q q q q q q q q q q q q q

8 a q q q q q q q q q q q q q q q q q q q q q q q q q q

9 a q q q q q q q q q q q q q q q q q q q q q q q q q q

10 a q q q q q q q q q q q q q q q q q q q q q q q q q q

11 a q q q q q q q q q q q q q q q q q q q q q q q q q q

12 a q q q q q q q q q q q q q q q q q q q q q q q q q q

13 a q q q q q q q q q q q q q q q q q q q q q q q q q q

14 a q q q q q q q q q q q q q q q q q q q q q q q q q q

15 a q q q q q q q q q q q q q q q q q q q q q q q q q q

16 a q q q q q q q q q q q q q q q q q q q q q q q q q q

17 a q q q q q q q q q q q q q q q q q q q q q q q q q q

18 a q q q q q q q q q q q q q q q q q q q q q q q q q q

19 a q q q q q q q q q q q q q q q q q q q q q q q q q q

20 a q q q q q q q q q q q q q q q q q q q q q q q q q q

21 a q q q q q q q q q q q q q q q q q q q q q q q q q q

22 a q q q q q q q q q q q q q q q q q q q q q q q q q q

23 a q q q q q q q q q q q q q q q q q q q q q q q q q q

24 a q q q q q q q q q q q q q q q q q q q q q q q q q q

Figure 2: Snapshots for real-time generation of infinite
sequence {2n|n = 1, 2, ...}.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 N0 Q Q Q Q Q Q Q Q Q Q Q Q Q Q

1 N0 a0 Q Q Q Q Q Q Q Q Q Q Q Q Q

2 Q N0 Q Q Q Q Q Q Q Q Q Q Q Q Q

3 Q d Q Q Q Q Q Q Q Q Q Q Q Q Q

4 Q a1 a0 Q Q Q Q Q Q Q Q Q Q Q Q

5 Q Wo a1 Q Q Q Q Q Q Q Q Q Q Q Q

6 Q d a2 Q Q Q Q Q Q Q Q Q Q Q Q

7 Q R Wo a0 Q Q Q Q Q Q Q Q Q Q Q

8 Q R Wo a1 Q Q Q Q Q Q Q Q Q Q Q

9 Q R Wo a2 Q Q Q Q Q Q Q Q Q Q Q

10 Q R d a2 a0 Q Q Q Q Q Q Q Q Q Q

11 Q R R R a1 Q Q Q Q Q Q Q Q Q Q

12 Q R R R We Q Q Q Q Q Q Q Q Q Q

13 Q R R R We a0 Q Q Q Q Q Q Q Q Q

14 Q R R R We a1 Q Q Q Q Q Q Q Q Q

15 Q R R R We a2 Q Q Q Q Q Q Q Q Q

16 Q R R R We a2 a0 Q Q Q Q Q Q Q Q

17 Q R R R R R a1 Q Q Q Q Q Q Q Q

18 Q R R R R R a2 Q Q Q Q Q Q Q Q

19 Q R R R R R Wo a0 Q Q Q Q Q Q Q

20 Q R R R R R Wo a1 Q Q Q Q Q Q Q

21 Q R R R R R Wo a2 Q Q Q Q Q Q Q

22 Q R R R R R Wo a2 a0 Q Q Q Q Q Q

23 Q R R R R R Wo R a1 Q Q Q Q Q Q

24 Q R R R R R Wo R a2 Q Q Q Q Q Q

25 Q R R R R R Wo R a2 a0 Q Q Q Q Q

26 Q R R R R R Wo R R a1 Q Q Q Q Q

27 Q R R R R R d R R a2 Q Q Q Q Q

28 Q R R R R R R R R a2 a0 Q Q Q Q

29 Q R R R R R R R R R a1 Q Q Q Q

30 Q R R R R R R R R R a2 Q Q Q Q

31 Q R R R R R R R R R Wo a0 Q Q Q

32 Q R R R R R R R R R Wo a1 Q Q Q

33 Q R R R R R R R R R Wo a2 Q Q Q

34 Q R R R R R R R R R Wo a2 a0 Q Q

35 Q R R R R R R R R R Wo R a1 Q Q

36 Q R R R R R R R R R Wo R a2 Q Q

37 Q R R R R R R R R R Wo R a2 a0 Q

38 Q R R R R R R R R R Wo R R a1 Q

39 Q R R R R R R R R R Wo R R a2 Q

40 Q R R R R R R R R R Wo R R a2 a0

Fig.  3(b)
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Figure 3: Time-space diagram for real-time generation
of Fibonacci sequence(Fig. 3(a)) and snapshot for its
computer simulation(Fig. 3(b)).
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1
R = 0 R = 1

L = 0

L = 1

Q

(Q,0,0) (Q,1,1)

(a0,1,0) --

2
R = 0 R = 1

L = 0

L = 1

R

(R,0,0) (R,1,0)

(R,0,1) --

3
R = 0 R = 1

L = 0

L = 1

a0

(a1,0,0) --

(N0,1,0) --

4
R = 0 R = 1

L = 0

L = 1

a1

(a2,0,1) (Wo,0,0)

(We,0,1) --

5
R = 0 R = 1

L = 0

L = 1

a2

(a2,0,0) (R,0,0)

(Wo,0,0) (R,0,1)

6
R = 0 R = 1

L = 0

L = 1

We

(We,0,0) (We,0,0)

(R,1,1) --

7
R = 0 R = 1

L = 0

L = 1

Wo

(Wo,0,0) (Wo,0,0)

(d,0,1) --

8
R = 0 R = 1

L = 0

L = 1

N0

(N0,1,1) (Q,1,1)

(d,0,1) --

9
R = 0 R = 1

L = 0

L = 1

d

(R,1,0) --

(a1,1,0) --

Table 1: Transition rules for real-time generation of Fi-
bonacci sequence.

3.2 Fibonacci sequence

Next we consider Fibonacci sequence defined as f1 = 1,
f2 = 1, fn = fn−1 + fn−2(n ≥ 3). Real-time genera-
tion of Fibonacci sequence is described in terms of four
waves: a-wave, b-wave, b’-wave and w-wave. The a-wave,
generated by C1 at time t = 0, propagates in the right
direction at 1/3 speed. The b-wave, generated on C1

at time t = 1, oscillates between C1 and w-wave and
moves at 1/1 speed between them. The w-wave, which
is generated on the intersecting point of a- and b’-waves,
remains there till the next b-wave’s arrival. It acts as a
wall. The b’-wave is a split version of b-wave as will be
described later. Whenever the b-wave arrives at C1, C1

takes a special state and outputs 1 to its left link. When
the b-wave collides with w-wave from its left side, it is
split into two b- and b’-waves. The former reflects there
to the left and the latter proceeds in the right direction
at 1/1 speed. Simultaneously, the w-wave vanishes. The
split b’-wave generates a new w-wave when it meets a-
wave and it itself disappears simultaneously. Fig. 3(a)
is a time-space diagram showing the interactions of four
waves given above.
Now we show straightforwardly how the Fibonacci se-
quence can be generated in real-time. The first two
values of the Fibonacci sequence are such that f1 = 1,
f2 = 1. We can construct the CA1−bit so that its left
end cell outputs 1 at time t = 1. The output at time
t = 1 is interpreted as two values given above. Let m
be any natural number such that m ≥ 3. We assume
that at time t = fm−2, C1 outputs 1 to its left link
and the w-wave keeps its position on Cfm−3/2. Then,
we can get the following observations: The b-wave, gen-
erated by C1 at time t = fm−2, collides with the w-
wave at time t = fm−2 + (1/2) · fm−3, and simulta-
neously it splits into b- and b’-waves. The b’-wave,
proceeding in the right direction, collides with the a-
wave at time t = (3/2) · fm−2 on Cfm−2/2. The new
w-wave, having disappeared on Cfm−3/2, will be gen-
erated on Cfm−2/2 at time t = (3/2) · fm−2. The b-
wave, reflecting in the left direction, arrives at C1 at
time t = fm−2 + fm−3 = fm−1 and outputs 1 to its left
link. Afterwards the b-wave will reach Cfm−2/2 at time
t = (3/2) · fm−1 and it can always find the new w-wave,
since t = (3/2)·fm−1−(3/2)·fm−2 = (3/2)·fm−3 > 0. It

is easily seen by mathematical induction that the scheme
given above can exactly generate the sequence in real-
time. In Fig. 3(b) we show consecutive snapshots for
the real-time generation of Fibonacci sequence on 1-bit
CA with 9 internal states and 26 transition rules that is
given in Table 1. Thus we have:
[Theorem 2] Fibonacci sequence can be generated by
a CA1−bit in real-time.

3.3 Prime sequence

Arisawa [1], Fischer [3] and Korec [4] studied real-time
generation of a class of natural numbers on the conven-
tional cellular automata, where O(1) bits of information
were allowed to be exchanged at one step between neigh-
boring cells. Fischer [3] showed that prime sequences can
be generated in real-time on the cellular automata with
11 states for C1 and 37 states for Ci(i ≥ 2). Arisawa
[1] also developed a real-time prime generator and de-
creased the number of states of each cell to 22. Korec
[4] reported a real-time prime generator having 11 states
on the same model. Umeo and Kamikawa [15] showed
that the prime sequence can be generated in twice real-
time by CA1−bit having 54 internal states and 107 tran-
sition rules. In this section, we present a real-time prime
generation algorithm on CA1−bit. The algorithm is im-
plemented on a CA1−bit using 34 internal states and 71
transition rules. Our prime generation algorithm is based
on the well-known sieve of Eratosthenes. Imagine a list of
all integers greater than 2. The first member, 2, becomes
a prime and every second member of the list is crossed
out. Then, the next member of the remainder of the list,
3, is a prime and every third member is crossed out. In
Eratosthenes’ sieve, the procedure continues with 5, 7,
11, and so on. In our procedure, given below, for any
odd integer k ≥ 3, every 2k -th member of the list begin-
ning with k2 will be crossed out, since the k -th members
less than k2 (that is, {i · k| 2 ≤ i ≤ k − 1}) and 2k -th
members beginning with k2+k (that is, it is an even num-
ber such that {(k +2i− 1) · k|i = 1, 2, 3, ...}) should have
been crossed out in the previous stages. Thus, every k-th
member beginning with k2 is successfully crossed out in
our procedure. Those integers never being crossed out
are the primes. Figure 3 is a time-space diagram that
shows a real-time detection of odd multiples of three,
five and seven. In our detection, we use two 1-bit sig-
nals a- and b-waves, which will be described later, and
pre-set partitions in which these two 1-bit signals bounce
around.
We now outline the algorithm. Each cross-out operation
is performed by C1. We assume that the cellular space
is initially divided by the partitions such that a special
mark “w” is printed on cell Ci2 , for any positive integer
i ≥ 1. Those partitions will be used to generate recipro-
cating signals for the detection of odd multiples of, for
example, three, five, and seven. We denote a subcellular
space sandwiched by Ck and C� as Si, where k = i2 ,
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Figure 4: An h-wave that inhibits the reflection of 1-bit
b-wave at the left end of each partition.

� = (i + 1)2 for any i ≥ 1, and call it the i-th partition.
Note that Si contains (2i +2) cells, including both ends.
The way to set up the partitions in terms of 1-bit com-
munication will be described in Lemma 2.

[Lemma 1] Let M be a CA1−bit. We assume that the
initial array of M is partitioned into infinite blocks such
that a special symbol “w” is marked on cells Ci2 , for any
positive integer i ≥ 1. The array M given above can
generate the i-th prime at time t = i.
(Proof) Consider a unit speed (1-cell/1-step) signal that
reciprocates between the left and right ends of Si, which
is shown as the zigzag movements in Fig. 4. This signal
is referred to as the a-wave. At every reciprocation, the
a-wave generates a b-wave on the left end of Si. The
b-wave continues to move to C1 at unit speed to the left
through Si−1, Si−2, ..., S2, and S1. The b-wave generated
at the left end of Si is responsible for notifying C1 of odd
multiples of odd integer (2i+1) such that (2j+1)(2i+1)
for any positive integer j ≥ i. In addition, the a-wave,
on the second trip to the right end of Si, initiates a new
a-wave for Si+1.
We assume that the initial a-wave for Si is generated on
the left end of Si at time t = 3i2. Then, as is shown in
Fig. 4, the b-wave reaches C1 at step t = (2i + 1)2 +2j ·
(2i+1), where j =0, 1, 2,.., . Moreover, the initiation of
the first a-wave for Si+1 is successfully made at step t =
3(i + 1)2 at the left end of Si+1. We observe from Fig.
4 that the following signals are generated at the correct
time. At time t = 3, the first a-wave starts toward the
right from the cell C1. At time t = 6, the a-wave arrives
at the right end of S1, and then is reflected toward the

left and reaches C1 at t = 9. The a-wave again proceeds
toward the right at unit speed and reaches the right end
of S1. The first a-wave for S2 is generated here. By
mathematical induction, we see that the first a-wave for
Si can be generated on the left end of Si at time t = 3i2

for any i ≥ 1. In this way, the b-wave generated at the
left end of Si notifies C1 of odd multiples of (2i+1) that
are greater than (2i + 1)2. Multiples of (2i + 1) that are
less than (2i + 1)2 have been detected in the previous
stages (See Fig. 4).

Whenever a left-traveling a-wave generated on Si and the
left-traveling b-wave generated on Sj (j ≥ i+1) start si-
multaneously at the right end of Si, they are merged into
one a-wave. Otherwise, the b-wave meets a reflected a-
wave in Si. Two kinds of unit speed left-traveling 1-bit
signals exist in Si (i ≥ 1), that is, an a-wave that is re-
ciprocating on Si and a b-wave that is generated on Sj

(j ≥ i + 1). These two left-traveling 1-bit signals must
be distinguished, since the latter does not produce a re-
ciprocating a-wave. In order to avoid the reflection of
the b-wave at the left end of each partition, we intro-
duce a new h-wave, as shown in Fig. 4. Whenever a
right-traveling a-wave and a left-traveling b-wave meet
on a cell in Si, the h-wave is newly generated at the
next step on the cell in which they meet and, one step
later, the h-wave begins to follow the left-traveling b-
wave at unit speed. The h-wave stops the reflection of
the b-wave at the left end of Si, and then both waves
disappear. A left-traveling a-wave and b-wave generated
on Sj (j ≥ i + 1) always move with at least one cell
interleaved between them. This enables the h-wave to
be generated and transmitted toward the left. The left
end cell C1 has a counter that operates in modulo 2 and
checks the parity of each step in order to detect every
multiple of two. C1 outputs a 1-bit signal to its left link
if and only if it has not received any 1-bit signal from its
right link at its previous step t. Then, t is exactly prime.

In this way, the initially partitioned array given above
can generate the prime sequence in real-time. In the next
lemma, we show that the partition in the cellular space
can be set up in time.

[Lemma 2] For any i ≥ 3, the partition Si can be set
up in time. Precisely, the right end cell Ck of the i-th
partition Si, where k = (i + 1)2, can be marked at step
t = 3i2 + 2i + 3.

(Proof) For the purpose of setting up the partitions in
the cellular space in time, we introduce seven new waves:
c-wave, d-wave, e-wave, f-wave, g-wave, u-wave and v-
wave. The direction in which these waves propagate and
their propagation speeds are as follows:
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Wave Direction Speed
c-wave right 1/2
d-wave right 1/1
e-wave right 1/3
f-wave left 1/1
g-wave right 1/1

stays at a cell
u-wave for only four steps and 0

acts as a delay
v-wave left 1/1

The u-wave always stays at a cell for only four steps and
acts as a delay for the generation of v-wave. Both opera-
tions for setting up the partitions and the generation and
propagation of a- and b-waves described in the previous
lemma are performed in parallel on the array. We make
a small modification to the a-wave. The first reciproca-
tion of the a-wave in each Si (i ≥ 3) is replaced by the
c-, d-, e-, f-, u- and v-waves.
For any i ≥ 3, we assume that:

• A1: The c- and d-waves in Si−1 arrive simultane-
ously at cell Ck, where k = i2, and prints “w” as
a right partition mark of Si−1 on the cell at time
t = 3i2 − 4i + 4. The marking itself acts as a left
partition of Si.

• A2: The g-wave in Si−1 hits the right end of Si−1

at time t = 3i2 − 2i and generates the c-wave in Si.

• A3: The a-wave in Si−1 hits the right end of Si−1

at time t = 3i2 and generates the d- and e-waves for
Si at time t = 3i2 + 2.

Then, the following statements can be obtained.

• S1: The c- and d-waves in Si arrive at the right end
cell of Si, Ck, where k = (i + 1)2, and the marker
“w” is printed on the cell Ck at time t = 3(i + 1)2−
4(i + 1) + 4 = 3i2 + 2i + 3.

• S2: At time t = 3i2 + 2i, the both c’- and d-waves
meet on the cell Ck, where k = i2+2i−2. Let ∆1, ∆2

be any integer such that 0 ≤ ∆1 ≤ 4i+3, 0 ≤ ∆2 ≤
2i + 1, respectively. At time t = 3i2 − 2i + ∆1, the
1/2-speed c-wave stays at Ci2+�∆1/2�. On the other
hand, the 1/1-speed d-wave stays at Ci2+∆2 at step
t = 3i2 + 2 + ∆2. Therefore, the distance between
cells where the both c- and d-waves are staying at
step t = 3i2 + 2i is 2. In order to make those two
waves have contact at this step, we introduce a new
wave. The c-wave being propagated generates at
every two steps a left-traveling 1/1-speed tentacle-
like wave that will disappear one step later after its
emergence. The signal is referred to as the c’-wave.
The c’-wave acts as a look-ahead signal that notifies
the d-wave of its timing of f-wave generation. At
time t = 3i2 + 2i, the both c’- and d-waves meet on
the cell Ck, where k = i2 + 2i − 2. When the two

waves meets, the f-wave is generated there simulta-
neously.

• S3: The left-traveling 1/1-speed f-wave, generated
at Ci2+2i−2 at step t = 3i2+2i, meets the 1/3-speed
e-wave on C�, � = i2 + i− 1 at step t = 3i2 + 3i− 1.
This statement can be easily proved by a simple
calculation. The g- and u-waves will be generated
simultaneously on the cell in which the f- and e-
waves meet.

• S4: The u-wave remains at C�, � = i2 + i − 1 for
only four steps, and then generates a v-wave at step
t = 3i2 + 3i + 3.

• S5: The g-wave hits the right end of Si at step t =
3(i + 1)2 − 2(i + 1) = 3i2 + 4i + 1 and generates the
c-wave for Si+1.

• S6: The v-wave hits the left end of Si and generates
the first a-wave in Si at step t = 3i2+4i+2. The first
a-wave hits the right end of Si at step t = 3(i+1)2 =
3i2 + 6i + 3 and initiates the generation of d- and
e-waves at step t = 3(i+1)2 +2 = 3i2 +6i+5. The
a-wave for the 2nd, 3rd, ... reciprocations in Si are
generated at the same timing, as is shown in Fig. 4.

Thus, the partition setting for the right end of Si (i ≥
3) is made inductively. The first two markings on cells
S1 and S2 at times t = 7 and 18, respectively, and the
generation of c-, d- and e-waves at the left end of S2

at steps 8 and 14 are realized in terms of finite state
descriptions. Thus, we can set up those entire partitions
inductively in time.

In addition to Lemma 2, the generation of a- and b-waves
and a number of additional signals in S1 and S2, as shown
in Fig. 5, are also implemented in terms of finite state
descriptions. Figure 5 is our final time-space diagram
for the real-time prime generation algorithm. We have
implemented the algorithm on a computer. Each cell has
34 internal states and 71 transition rules. The transition
rule set is given in Table 1. We have tested the validity of
the rule set from t = 0 to t = 20000 steps. In Fig. 6, we
show a number of snapshots of the configuration from t =
0 to 50. The readers can see that the first fifteen primes
can be generated in real-time by the left end cell. Based
on Lemmas 1 and 2, we obtain the following theorem.

[Theorem 3] A prime sequence can be generated by a
CA1−bit in real-time.

4 Conclusions

A sequence generation problem on a special restricted
class of cellular automata having 1-bit inter-cell com-
munications (CA1−bit) has been studied. Several state-
efficient real-time sequence generation algorithms for
non-regular sequences have been proposed.
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Figure 5: Time-space diagram for real-time prime gen-
eration.
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