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Abstract: Cellular automata (CA) are considered to be
a non-linear model of complex systems in which an infi-
nite one-dimensional array of finite state machines (cells)
updates itself in a synchronous manner according to a
uniform local rule. We study a sequence generation prob-
lem on a special restricted class of cellular automata hav-
ing 1-bit inter-cell communications (CAj_pit) and pro-
pose several state-efficient real-time sequence generation
algorithms for non-regular sequences.
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1 Introduction

Cellular automata (CA) are considered to be a non-
linear model of complex systems in which an infinite one-
dimensional array of finite state machines (cells) updates
itself in a synchronous manner according to a uniform lo-
cal rule. We study a sequence generation problem on a
special restricted class of cellular automata having 1-bit
inter-cell communications (CAj_p;t) and propose several
state-efficient real-time sequence generation algorithms
for non-regular sequences. The 1-bit CA can be thought
to be one of the most powerless and simplest models in
a variety of CAs. First, in section 2, we introduce a cel-
lular automaton with 1-bit inter-cell communication and
define the sequence generation problem on CAj_p;¢. In
section 3, it is shown that infinite non-regular sequences
such as {2"|n = 1,2,3,..} and Fibonacci sequences can
be generated in real-time by cellular automata with 1-
bit inter-cell communication. Those sequence genera-
tion algorithms will be realized on the 1-bit CAs with
a relatively small number of internal states. It is also
shown that an infinite prime sequence can be generated
in real-time by a cellular automaton having 1-bit inter-
cell communications (CAj_pit ). The algorithm presented
is based on the classical sieve of Eratosthenes, and its im-
plementation will be made on a CA;_y; using 34 internal
states and 71 transition rules.
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Figure 1: A one-dimensional cellular automaton with 1-
bit inter-cell communication.

2 Sequence generation problem
on CAj_

A one-dimensional 1-bit inter-cell communication cellu-
lar automaton consists of an infinite array of identical
finite state automata, each located at a positive integer
point (See Fig. 1). Each automaton is referred to as
a cell. A cell at point ¢ is denoted by C;, where ¢ > 1.
Each C;, except for Cy, is connected to its left- and right-
neighbor cells via a left or right one-way communication
link. These communication links are indicated by right-
and left-pointing arrows in Fig. 1, respectively. Each
one-way communication link can transmit only one bit
at each step in each direction. One distinguished left-
most cell C;, the communication cell, is connected to
the outside world. A cellular automaton with 1-bit inter-
cell communication (abbreviated by CAj_p;t) consists of
an infinite array of finite state automata A = (Q,d, F'),
where

1. @ is a finite set of internal states.

2. 0 is a function, defining the next state of any
cell and its binary outputs to its left- and right-
neighbor cells, such that 6: @ x {0,1} x {0,1} —
Q x {0,1} x {0,1}, where §(p,z,y) = (¢,2,y'), p,
q€Q, x,2,y,y € {0,1}, has the following mean-
ing. We assume that at step ¢ the cell C; is in state
p and is receiving binary inputs x and y from its left
and right communication links, respectively. Then,
at the next step, t+1, C; assumes state ¢ and out-
puts 2’ and ¥’ to its left and right communication
links, respectively. Note that binary inputs to C;
at step t are also outputs of C;_; and C;y; at step
t. A quiescent state g € @ has a property such that

4(¢,0,0) = (¢,0,0).
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3. F C Q is a special subset of Q. The set F is used
to specify a designated state of C; in the definition
of sequence generation.

Thus, the CAj_p; is a special subclass of normal (i.e.,
conventional) cellular automata. We now define the se-
quence generation problem on CA;_y;;. Let M be a
CA1_pit, and let {t,|n =1,2,3,...} be an infinite mono-
tonically increasing positive integer sequence defined for
natural numbers, such that ¢, > n for any n > 1. We
then have a semi-infinite array of cells, as shown in Fig.
1, and all cells, except for Cy, are in the quiescent state at
time ¢ = 0. The communication cell C; assumes a special
state r in Q and outputs 1 to its right communication
link at time ¢t = 0 for initiation of the sequence generator.
We say that M generates a sequence {t,|n =1,2,3,...}
in k linear-time if and only if the leftmost end cell of M
falls into a special state in F' C Q and outputs 1 via its
leftmost communication link at time t = kt,,, where k is
a positive integer. We call M a real-time generator when
k=1

3 Real-time generation of non-
regular sequences

Arisawa[l], Fischer[3] and Korec[4] studied real-time
generation of a class of natural numbers on the con-
ventional cellular automata, where O(1) bits of informa-
tion were allowed to be exchanged at one step between
neighboring cells. In this section we propose several 1-bit
communication cellular algorithms which generate non-
regular infinite sequences in real-time. The first sequence
we consider is {2"|n =1,2,3,..}.

3.1 Sequence {2"|n=1,2,3,..}

We show that the context-sensitive sequence {2"|n =
1,2,3,...} can be generated in real-time by a l-state
CA1_pit. A transition rule set for the CAi_piy M gen-
erating the sequence is as follows: M = {Q,d}, where

Q ={a,q},

4(a,0,0) = (a,0,0), 6(a,0,1) = (a,1,0),
5(q7050) = (q7070) 5(q70a 1) = (qa 17 1)7
6(¢,1,0) = (¢,1,1), (g, 1,1) = (¢,0,0).

The leftmost cell C; always assumes a state a and C; (i >
2) takes a state ¢ at any step. Figure 2 shows some
snapshots for the real-time generation of the sequence.
Small black right and left triangles » and <, shown in
Fig. 2, indicate a 1-bit signal transfer in the right or left
direction between neighbour cells. A symbol in a cell
shows its internal state.

[Theorem 1] An infinite sequence {2"|n = 1,2,3,..}
can be generated by a 1-state CAj_p; in real-time.
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Figure 2: Snapshots for real-time generation of infinite
sequence {2"|n =1,2,..}.
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Figure 3: Time-space diagram for real-time generation
of Fibonacci sequence(Fig. 3(a)) and snapshot for its
computer simulation(Fig. 3(b)).
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Table 1: Transition rules for real-time generation of Fi-
bonacci sequence.

3.2 Fibonacci sequence

Next we consider Fibonacci sequence defined as f; =1,
fo=1, fo = fu-1 + fa—2(n > 3). Real-time genera-
tion of Fibonacci sequence is described in terms of four
waves: a-wave, b-wave, b’-wave and w-wave. The a-wave,
generated by C; at time ¢ = 0, propagates in the right
direction at 1/3 speed. The b-wave, generated on C;
at time t = 1, oscillates between C; and w-wave and
moves at 1/1 speed between them. The w-wave, which
is generated on the intersecting point of a- and b’-waves,
remains there till the next b-wave’s arrival. It acts as a
wall. The b’-wave is a split version of b-wave as will be
described later. Whenever the b-wave arrives at Cy, Cy
takes a special state and outputs 1 to its left link. When
the b-wave collides with w-wave from its left side, it is
split into two b- and b’-waves. The former reflects there
to the left and the latter proceeds in the right direction
at 1/1 speed. Simultaneously, the w-wave vanishes. The
split b’-wave generates a new w-wave when it meets a-
wave and it itself disappears simultaneously. Fig. 3(a)
is a time-space diagram showing the interactions of four
waves given above.

Now we show straightforwardly how the Fibonacci se-
quence can be generated in real-time. The first two
values of the Fibonacci sequence are such that f; = 1,
fo = 1. We can construct the CA;_p;; so that its left
end cell outputs 1 at time t = 1. The output at time
t = 1 is interpreted as two values given above. Let m
be any natural number such that m > 3. We assume
that at time ¢t = f,,,_2, C; outputs 1 to its left link
and the w-wave keeps its position on Cy, /5. Then,
we can get the following observations: The b-wave, gen-
erated by C; at time ¢ = f,,,—2, collides with the w-
wave at time t = fp,—2 + (1/2) - fi—3, and simulta-
neously it splits into b- and b’-waves. The b’-wave,
proceeding in the right direction, collides with the a-
wave at time t = (3/2) - fju_2 on Cy, /5. The new
w-wave, having disappeared on Cy, /9, will be gen-
erated on Cy /o at time ¢ = (3/2) - fn—2. The b-
wave, reflecting in the left direction, arrives at Cp at
time t = fin—2 + fin—3 = fm—1 and outputs 1 to its left
link. Afterwards the b-wave will reach Cy /5 at time
t =(3/2) fm—1 and it can always find the new w-wave,

since t = (3/2) frn—1—(3/2) fimn—2 = (3/2) fmn—3 > 0. It

is easily seen by mathematical induction that the scheme
given above can exactly generate the sequence in real-
time. In Fig. 3(b) we show consecutive snapshots for
the real-time generation of Fibonacci sequence on 1-bit
CA with 9 internal states and 26 transition rules that is
given in Table 1. Thus we have:

[Theorem 2] Fibonacci sequence can be generated by
a CAq_p; in real-time.

3.3 Prime sequence

Arisawa [1], Fischer [3] and Korec [4] studied real-time
generation of a class of natural numbers on the conven-
tional cellular automata, where O(1) bits of information
were allowed to be exchanged at one step between neigh-
boring cells. Fischer [3] showed that prime sequences can
be generated in real-time on the cellular automata with
11 states for C; and 37 states for C;(¢ > 2). Arisawa
[1] also developed a real-time prime generator and de-
creased the number of states of each cell to 22. Korec
[4] reported a real-time prime generator having 11 states
on the same model. Umeo and Kamikawa [15] showed
that the prime sequence can be generated in twice real-
time by CAj_p;; having 54 internal states and 107 tran-
sition rules. In this section, we present a real-time prime
generation algorithm on CAj_p. The algorithm is im-
plemented on a CAj_p; using 34 internal states and 71
transition rules. Our prime generation algorithm is based
on the well-known sieve of Eratosthenes. Imagine a list of
all integers greater than 2. The first member, 2, becomes
a prime and every second member of the list is crossed
out. Then, the next member of the remainder of the list,
3, is a prime and every third member is crossed out. In
Eratosthenes’ sieve, the procedure continues with 5, 7,
11, and so on. In our procedure, given below, for any
odd integer k > 3, every 2k-th member of the list begin-
ning with k2 will be crossed out, since the k-th members
less than k2 (that is, {i - k|2 < i < k — 1}) and 2k-th
members beginning with k%+k (that is, it is an even num-
ber such that {(k+2i—1)-k|i = 1,2,3,...}) should have
been crossed out in the previous stages. Thus, every k-th
member beginning with k2 is successfully crossed out in
our procedure. Those integers never being crossed out
are the primes. Figure 3 is a time-space diagram that
shows a real-time detection of odd multiples of three,
five and seven. In our detection, we use two 1-bit sig-
nals a- and b-waves, which will be described later, and
pre-set partitions in which these two 1-bit signals bounce
around.

We now outline the algorithm. Each cross-out operation
is performed by C;. We assume that the cellular space
is initially divided by the partitions such that a special
mark “w” is printed on cell C;2, for any positive integer
i > 1. Those partitions will be used to generate recipro-
cating signals for the detection of odd multiples of, for
example, three, five, and seven. We denote a subcellular
space sandwiched by Cj and C; as S;, where k = i2 |
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Figure 4: An h-wave that inhibits the reflection of 1-bit
b-wave at the left end of each partition.

0= (i+ 1)2 for any 7 > 1, and call it the i-th partition.
Note that S; contains (2i + 2) cells, including both ends.
The way to set up the partitions in terms of 1-bit com-
munication will be described in Lemma 2.

[Lemma 1] Let M be a CAj_pi. We assume that the
initial array of M is partitioned into infinite blocks such
that a special symbol “w” is marked on cells C;2, for any
positive integer ¢ > 1. The array M given above can
generate the i-th prime at time ¢t = 1.

(Proof) Consider a unit speed (1-cell/1-step) signal that
reciprocates between the left and right ends of S;, which
is shown as the zigzag movements in Fig. 4. This signal
is referred to as the a-wave. At every reciprocation, the
a-wave generates a b-wave on the left end of S;. The
b-wave continues to move to C; at unit speed to the left
through S;_1, S;—2, ..., S2, and S;. The b-wave generated
at the left end of S; is responsible for notifying C; of odd
multiples of odd integer (2i+4 1) such that (25+1)(2i+1)
for any positive integer 7 > ¢. In addition, the a-wave,
on the second trip to the right end of S;, initiates a new
a-wave for S; 1.

We assume that the initial a-wave for S; is generated on
the left end of S; at time ¢t = 3i2. Then, as is shown in
Fig. 4, the b-wave reaches C at step t = (2i + 1)2 +2; -
(2i+1), where j =0, 1, 2,.., . Moreover, the initiation of
the first a-wave for S; 1 is successfully made at step t =
3(i+1)% at the left end of S;;;. We observe from Fig.
4 that the following signals are generated at the correct
time. At time ¢t = 3, the first a-wave starts toward the
right from the cell C;. At time t = 6, the a-wave arrives
at the right end of S;, and then is reflected toward the

left and reaches C; at t =9. The a-wave again proceeds
toward the right at unit speed and reaches the right end
of S;. The first a-wave for Sy is generated here. By
mathematical induction, we see that the first a-wave for
S; can be generated on the left end of S; at time t = 3i?
for any ¢ > 1. In this way, the b-wave generated at the
left end of S; notifies C; of odd multiples of (2i+ 1) that
are greater than (2i 4+ 1)2. Multiples of (2i + 1) that are
less than (2i + 1)? have been detected in the previous
stages (See Fig. 4).

Whenever a left-traveling a-wave generated on S; and the
left-traveling b-wave generated on S; (j > ¢+ 1) start si-
multaneously at the right end of S;, they are merged into
one a-wave. Otherwise, the b-wave meets a reflected a-
wave in S;. Two kinds of unit speed left-traveling 1-bit
signals exist in S; (¢ > 1), that is, an a-wave that is re-
ciprocating on S; and a b-wave that is generated on S;
(j > i+ 1). These two left-traveling 1-bit signals must
be distinguished, since the latter does not produce a re-
ciprocating a-wave. In order to avoid the reflection of
the b-wave at the left end of each partition, we intro-
duce a new h-wave, as shown in Fig. 4. Whenever a
right-traveling a-wave and a left-traveling b-wave meet
on a cell in S;, the h-wave is newly generated at the
next step on the cell in which they meet and, one step
later, the h-wave begins to follow the left-traveling b-
wave at unit speed. The h-wave stops the reflection of
the b-wave at the left end of S;, and then both waves
disappear. A left-traveling a-wave and b-wave generated
on S; (j > i+ 1) always move with at least one cell
interleaved between them. This enables the h-wave to
be generated and transmitted toward the left. The left
end cell C; has a counter that operates in modulo 2 and
checks the parity of each step in order to detect every
multiple of two. Cy outputs a 1-bit signal to its left link
if and only if it has not received any 1-bit signal from its
right link at its previous step t. Then, ¢ is exactly prime.

In this way, the initially partitioned array given above
can generate the prime sequence in real-time. In the next
lemma, we show that the partition in the cellular space
can be set up in time.

[Lemma 2] For any ¢ > 3, the partition S; can be set
up in time. Precisely, the right end cell Cy of the i-th
partition S;, where k = (i + 1)2, can be marked at step
t=3i* +2i + 3.

(Proof) For the purpose of setting up the partitions in
the cellular space in time, we introduce seven new waves:
c-wave, d-wave, e-wave, f-wave, g-wave, u-wave and v-
wave. The direction in which these waves propagate and
their propagation speeds are as follows:
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| Wave | Direction ‘ Speed |

c-wave right 1/2

d-wave right 1/1

e-wave right 1/3

f-wave left 1/1

g-wave right 1/1
stays at a cell

u-wave | for only four steps and 0
acts as a delay

v-wave left 1/1

The u-wave always stays at a cell for only four steps and
acts as a delay for the generation of v-wave. Both opera-
tions for setting up the partitions and the generation and
propagation of a- and b-waves described in the previous
lemma are performed in parallel on the array. We make
a small modification to the a-wave. The first reciproca-
tion of the a-wave in each S; (i > 3) is replaced by the
c-, d-, e-, f-, u- and v-waves.

For any ¢ > 3, we assume that:

e A;: The c- and d-waves in S;_; arrive simultane-
ously at cell Cy, where k = i?, and prints “w” as
a right partition mark of S;_; on the cell at time
t = 3i®> — 4i + 4. The marking itself acts as a left
partition of S;.

e As: The g-wave in S;_1 hits the right end of S;_;
at time t = 372 — 2i and generates the c-wave in S;.

e Aj3: The a-wave in S;_; hits the right end of S;_;
at time ¢ = 3i? and generates the d- and e-waves for
S; at time ¢ = 372 4 2.

Then, the following statements can be obtained.

e Si: The c- and d-waves in S; arrive at the right end
cell of S;, Ci, where k = (i + 1)2, and the marker
“w” is printed on the cell Cy, at time ¢ = 3(i + 1)2 -
4(i4+1)+4=3i> +2i + 3.

e So: At time t = 342 + 2i, the both ¢’- and d-waves
meet on the cell Cy,, where k = i2+2i—2. Let Ay, A
be any integer such that 0 < A; <47+3,0 < As <
2 4 1, respectively. At time t = 3i2 — 2i + Ay, the
1/2-speed c-wave stays at Cj21|a, /2. On the other
hand, the 1/1-speed d-wave stays at C;24 A, at step
t = 3i® + 2 + Ay. Therefore, the distance between
cells where the both c- and d-waves are staying at
step t = 3i2 + 2i is 2. In order to make those two
waves have contact at this step, we introduce a new
wave. The c-wave being propagated generates at
every two steps a left-traveling 1/1-speed tentacle-
like wave that will disappear one step later after its
emergence. The signal is referred to as the ¢’-wave.
The c¢’-wave acts as a look-ahead signal that notifies
the d-wave of its timing of f-wave generation. At
time ¢ = 3i? 4 2i, the both ¢’- and d-waves meet on
the cell Cy, where k = i? 4+ 2i — 2. When the two

waves meets, the f-wave is generated there simulta-
neously.

e S3: The left-traveling 1/1-speed f-wave, generated
at Cy2_9;_ at step t = 3i2+2i, meets the 1/3-speed
e-wave on Cyp, £ =i%+1i—1 at step t = 312 +3i — 1.
This statement can be easily proved by a simple
calculation. The g- and u-waves will be generated
simultaneously on the cell in which the f- and e-
waves meet.

e S;: The u-wave remains at Cy, £ = 2 + 4 — 1 for
only four steps, and then generates a v-wave at step
t=3i* + 3i+ 3.

e S5: The g-wave hits the right end of S; at step ¢t =
3(i+1)* —2(i+1) = 3i2 4+ 4i + 1 and generates the
c-wave for S;y1.

e Si: The v-wave hits the left end of S; and generates
the first a-wave in S; at step t = 3i%2+4i+2. The first
a-wave hits the right end of S; at step t = 3(i+1)? =
3i% 4+ 67 + 3 and initiates the generation of d- and
e-waves at step t = 3(i+1)?+2 = 3i®+6i + 5. The
a-wave for the 2nd, 3rd, ... reciprocations in S; are
generated at the same timing, as is shown in Fig. 4.

Thus, the partition setting for the right end of S; (i >
3) is made inductively. The first two markings on cells
S; and Sy at times t = 7 and 18, respectively, and the
generation of c-, d- and e-waves at the left end of Sy
at steps 8 and 14 are realized in terms of finite state
descriptions. Thus, we can set up those entire partitions
inductively in time.

In addition to Lemma 2, the generation of a- and b-waves
and a number of additional signals in S; and Ss, as shown
in Fig. 5, are also implemented in terms of finite state
descriptions. Figure 5 is our final time-space diagram
for the real-time prime generation algorithm. We have
implemented the algorithm on a computer. Each cell has
34 internal states and 71 transition rules. The transition
rule set is given in Table 1. We have tested the validity of
the rule set from ¢t = 0 to ¢ = 20000 steps. In Fig. 6, we
show a number of snapshots of the configuration from ¢t =
0 to 50. The readers can see that the first fifteen primes
can be generated in real-time by the left end cell. Based
on Lemmas 1 and 2, we obtain the following theorem.

[Theorem 3] A prime sequence can be generated by a
CA1_pit in real-time.

4 Conclusions

A sequence generation problem on a special restricted
class of cellular automata having 1-bit inter-cell com-
munications (CAj_p;t) has been studied. Several state-
efficient real-time sequence generation algorithms for
non-regular sequences have been proposed.
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Figure 5: Time-space diagram for real-time prime gen-
eration.
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