Analysis of data streams using self-organizing methods

RICHARD WASNIOWSKI
Computer Science Department
California State University
Carson, CA 90747, USA

Abstract: - With the increase of data streams generation by sensor networks systems it is desirable to develop and improve methods that can automatically classify streams. This paper discusses some clustering mechanisms, and pilot experiments on the data collected from sensor networks. Using self-organizing methods and other techniques we obtain maps that establish a new relationship in acquired data structure. Analysis of the obtained clusters are made by Group Method of Data Handling. The results of the preliminary experiments validate the feasibility of this approach, and at the same time, indicate directions of further work. In order to reveal new structures in data streams we apply Self-Organizing Maps and Group Method of Data Handling algorithms.

Key-Words: - self-organizing map, polynomial algorithm, group method of data handling

1 Introduction

Monitoring streams of data generated by sensor nets is currently perceived as one of the important challenges for the data analysis and data processing. Complex systems are usually described by huge amounts of data, parameters and often have chaotic behavior. To reveal interrelations among these parameters new methods and algorithms of computer analysis have to be developed. These problems are of exceptional interest now when computer technologies provide enormous possibilities for collecting, storing and processing of information obtained by tracing system behavior. It is believed that this information is particularly important for the prediction of the system behavior. In this case researchers dealing with such types of systems often try to apply statistical or neural networks methods for the discovery of new knowledge about the system. In framework of this approach self-adjustable method known as self-organization methods are especially interesting because they could be applied in autonomous regime without external setting for every particular case. In this article we use two types of self-organization methods for investigation of financial market behavior by analyzing data series The study of the system behavior is a very important and actual question.

2 Problem Formulation

Many classical approaches and methods are pushed to, or even beyond their limits by the sheer size of the sensor data and by the high frequency of their arrival. Once sensor data have been monitored, pre-processed and temporarily stored using data base technology, their further analysis, however, is at present left to specialized, domain-dependent software packages. Evaluation algorithms for sensor data communicate with the data base hosting the data via languages like SQL for retrieval purposes only, but are themselves entirely coded in traditional imperative and object-oriented languages. This kind of reduction of data base technology to a subordinate role as pure data producer and its exclusion from the much more interesting and rewarding field of data analysis is challenged by our approach.
3 Self-organizing methods

2.1 SOM

The SOM is an unsupervised-learning neural-network method that provides a similarity graph of input data. A typical simplified version of the SOM algorithm consists of two steps iterated for every sample: finding the best matching units and adaptation of the weights.

Initially all neuron weights are initialized by uniform distribution on the interval [0,1]. The distance between two neurons of the two-dimensional grid is found as

$$d_j = \sqrt{\sum_{i=0}^{N-1} (x_i - w_{ij})^2},$$

where j is the index of neuron in the net, i is the dummy index of vector components, w_{ij} is the weight of synapse, which matches i- component of input vector with output neuron j. Thus, we find for each vector x such a neuron c, for which the distance between x and c is the smallest

$$c \equiv \min_j d_j.$$

Vectors of weights w_j are adapted using the following rule

$$w_j(t+1) = \begin{cases} w_j(t) + \alpha(t)h_j(t) \cdot |x(t) - w_j(t)|, & j \in N_c, \\ w_j(t), & j \notin N_c \end{cases}$$

where N_c describes the neighborhood of “neuron-winner” (3), $\alpha(t)$ is the learning-rate factor, which decreases monotonously with the regression steps, $h_j(t)$ is a scalar multiplier called the neighborhood function. Thus, training process leads to reduction of the distance between input signal and position of “neuron-winner” as well as to the reduction of the Euclidean distance between input vector and any vector w_j, $j \in N_c$. The SOM-map is obtained as the result of this mapping of vector x on neurons plane. Similar input vectors are placed closely to each other on the SOM-map. Such procedure makes it possible to single out the input information and locate the input vectors in the vicinity of similar vectors on the map without preliminary training, using only internal properties of input data. Next processing of the input data by chosen rule (4) leads to the neuron-grids training and formation of corresponding clusters.

2.2 GMDH

Dynamics of data streams behavior can be analyzed by methods of multiple regression [8]. But these methods take into account the whole set of input data and overload the final model (equation of regression). Self-organizing algorithms do not have this disadvantage. Group Method of Data Handling (GMDH) creates the model that includes only the most influential variables [7, 11]. The GMDH algorithms are based on a sorting-out procedure of model simulation and provide the best model according to the criterion given by the researcher. This model describes relations between their elements and the state of the whole system. Most of GMDH algorithms use polynomial referenced functions. General connections between input and output variables can be shown by Volterra functional series. A discrete analogue of Volterra series is Kolmogorov-Gabor polynomial

$$y = a_0 + \sum_{i=1}^{N} a_i x_i + \sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij} x_i x_j + \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} a_{ijk} x_i x_j x_k + ..., \quad (5)$$

where y - output variable vector, $(x_1, x_2, ..., x_N)$ - input data,

$(a_1, ..., a_N, ..., a_{ij}, ..., a_{ijk}, ...)$ - vector of coefficients or weights. Input data might consist
of independent variables, functional expressions
or finite residues. The key feature of GMDH
algorithms is a partition of input data into two
subsets. The first one is used to compute
coefficients of the polynomial using the list
square technique and to evaluate internal error
by some criterion. The second one is used to
calculate external error using information,
which is not applied for the coefficients
computations. Principles of self-organization
manifest themselves in rationalization of
optimal polynomial search. Internal criterion
monotonously decreases when complexity of
polynomials increases, simultaneously external
criterion passes its minimum. Then it is possible
to choose polynomial of optimal complexity,
which is unique for this criterion. In other
words, we provide sorting-out procedure for
partial polynomials to find polynomial of
optimal complexity (optimal model). It shows
the dependence of the output variable on the
most influential variables, which are chosen
from all input variables. External criterion
reaches its minimum on optimal model.
Interpretation of the results is similar to
multiple regression logic: the bigger is the
coefficient - the more influential is the variable
near it.

4 Conclusion

The results obtained by SOM algorithm are
sufficiently demonstrative and make it possible
to understand relationships inherent to such a
complex system like stock market. The GMDH
algorithm, in its turn, makes it possible to
establish analytical dependence of the stock
prices of the companies, which have correlated
behavior. The introduced self-organizing
methods complement each other. The obtained
results are self-consistent and allow finding an
optimal non-overloaded model, which is easy
for economic interpretation. Using the
combination of such methods promises to be
very perspective.

References:

Craig MacKinlay, John W. Campbell,
Andrew Y. Lo: The Econometrics of
Financial Markets, Princeton University
[2] Cox D. R., Hinkley D. V. and Barndorff-
Nielsen : Time series models in
econometrics, finance and other fields,
Chapman & Hall (1996)
http://www.mathworks.com/products/matla
b/
[4] Message Passing Interface (MPI),
http://www.mpi-forum.org/
[5] A.-P. N. Refenes, A. N. Burgess, Y. Bentz:
Neural Networks in Financial Engineering:
A Study in Methodology (1997) IEEE
Transactions on Neural Networks vol 8, n
6, November 1997
Visual Explorations in Finance with Self
Organizing Maps, Springer Finance, New
York (1998)
Lemke, GMDH algorithms for complex
system modelling, Mathematical and
Computer Modelling of Dynamical
development of self-organization
techniques in modelling: a review of the
group method of data handling (GMDH),
ACSE Research Report No 813, University
of Sheffield, UK, 2001 or
www.shef.ac.uk/acse/research/students/l.an
astasakis/813.pdf
[10] E. Ferster, B. Rents, Methods of correlation
and regression analysis: Transl. from german
- Moskow: Finance and statistics, 1983. (In
russian)
Self-Organization of a massive document
collection. IEEE transaction of Neural
Networks 2000, V.11, 13, pp.574-585.
[12] F. Lillo and R. Mantegna, Variety and
volatility in financial markets, Physical
Review E, vol.62. no.5. pp.6126-6134,
2000.
[20] Investigation of the Parallelization of AEW Simulations Written in MATLAB, Don Fabozzi 1999, HPEC99
[22] MPI Toolbox for Matlab (MPITB), http://atc.ugr.es/javier-bin/mpitb_eng