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Abstract: - We examine the kinematic model of a mobile robot with tools of differential geometry. These tools
allow comprehensive modelling of even complex mobile articulated mechanical systems. Furthermore, they offer a
very illustrative structure of the equations of motion by providing a so called trivial connection of pure motion and
shape  motion.  Pure  motion  is  the  systems evolution  in  physical  space,  shape  motion is  the  movement  of  the
articulated mechanics such as wheels, fins, flaps, legs, etc. Different from the most other publications, we try to
give a  graphical interpretation of the complex mathematical objects as well as a detailed mathematical treatment
of configuration spaces and its tangentials. This is motivated in the observation that people with an engineering
background often find it difficult to get into this mathematical domain.
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1 Introduction
By  exploring  mechanical  systems  from  a

differential  geometric  point  of  view,  one  wants  to
understand the structure of the equations of motion in
a way, that helps to isolate the important objects which
govern the motion of the system. The developments in
the field of geometric mechanics have led to progress
in the study of geometrical structure and dynamics of
mechanical  systems  [4,17].  By  modelling  the
locomotion process, it is possible to fully understand
the behaviour of the system. An analysis of complex
systems was made in [4]. A related modern example is
the  snakeboard  made  in  [12]  using  simulations  and
experiments.  Kelly  and  Murray  [9]  modelled  many
locomotive systems using kinematic  constraints  with
results  on controllability  and motion generation,  just
as  in  [18]  where  the  configuration  variables  are
divided  into  two  classes  (shape  and  position)
according to the basic structure of locomotion. In the
1970s Brockett put the theory of Lie groups and their
Lie algebras in the context of nonlinear control.  For
motion  control  problems  involving  rotating  and
translating  bodies  such  as  mobile  robots,  space
systems, underwater vechicles, the natural appearance
of certain Lie groups derives from the fact  that they
describe  the  configuration  space  of  the  system or  a
part  of  it  [10].  For  an  introduction  to  robotics  in  a
mathematical sense [15] is recommended and for the
understanding  of  mathematical  notions  we  suggest

[11,1,19,21,3].  Furthermore  in  this  paper  we  try  to
give  a  graphical  and  concrete  description  of  the
mathematical notions used in modelling and reducing
the equations of motion of a mobile robot. We try to
clarify  aspects  that  are  hidden  by  the  mathematical
framework,  i.e.  the  power  of  differential  geometric
formalism,  from  a  different  point  of  view.  This
formalism may  not  seem very  familiar  to  engineers
and  robotic  practitioners,  thus  we  try  to  make   it
understandable,  giving aid  in  the continued  study of
robotic locomotion.

The organisation of this paper is as follows: after
the short overview in chapter 1, in chapter 2 we handle
some basics for working with mechanical systems in a
graphical  way,  followed  by an introduction  of some
matrix groups that have great significance in robotics,
as  well  as  other  useful  tools  and  concepts.  We will
apply this  theory to  a simple two wheeled robot.  In
chapter  3,  we continue to study the robot  in  motion
also in a graphical way. We explain some basics about
Lie groups and their Lie algebras.

2 Basics of geometric mechanics

2.1 The configuration space is a manifold
For mechanical systems composed of rigid bodies,

the  configuration is  the  collection  of  all  ‘position’
variables. The number of variables  n  is equal to the
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number  of  degrees  of  freedom  (DoF)  of  the
mechanical  system.  The  set  of  all  configurations  is
called  configuration  space Q .  The  vector
q=q

1
,,q

n
∈Q  denotes  a  configuration  with

generalized positions q i . Fig.1 illustrates some simple
mechanics and their configuration spaces. For a rigid
planar rod pendulum (top left) the configuration space
is  S 1={x ,y ∈2 : x 2y2=1} . The spot on  the  S 1

circle represents the current configuration. However, a
configuration space at first is no mathematical object
one can calculate on. Thus one needs an object from
mathematics  which  is  comparable  to  configuration
spaces.  Consider  a  topological  manifold  which  is  a
topological space and locally looks like the euclidian
n 1.  Properties  of  n  can  be  transfered  to

manifolds,  in  particular  one  can  use  calculus  on
manifolds.  Note  that  a  manifold  has  no  global,  but
only local coordinates. Such a manifold is isomorphic
to configuration spaces of many mechanical systems.
Generally any q i  is of unlimited range2. Thus one can
speak of the configuration manifold.

Fig.1 – Simple mechanics and their configuration
manifolds.

Fig.2 – Part of configuration manifold of mobile
robot.

1more precisely a manifold is a space where for any point
there exists an open neighbourhood U  and a
homeomorphism  :U U ⊂n  on any open set
U ⊂n  . Refer to e.g. [11,16] for exact definitions.

2 the range of q
i
 is often limited in practice but this would

make theory more complex. It seems easier to omit limits in
theory and consider them in practice – if needed.  

The  articulated  mechanics  of  the  considered  mobile
robot  consist  of  two  independently  driven  wheels
which  form  a  S 1×S 1  part  of  the  configuration
manifold as shown in Fig.2. This is also called shape
space and  1,2  are  called  shape variables.  Since
the robot  is  free  to  locomote  there  is  a  second  part
which represents  the robots position3 on a plane and
will be introduced in the next subsection.

2.2 Special matrix groups are manifolds
If  a  body on  a  horizontal  plane  is  free  to  rotate

about  the vertical  axis,  the orientation  ∈  can be
represented as a matrix

R=[cos −sin

sin cos ] .

R  is  orthogonal  i.e.  detR =1  (in  a  right-handed
coordinate  frame)  and  R

T=R−1
4.   Hence  R  is  a

member of the special orthogonal group SO 2 .
The  mobile  robot  is  movable  on  a  plane  and  its
position can also be written in matrix form:

g=[cos −sin x

sin cos y

0 0 1]=[R p

0 1] . (1)

Fig.3 shows  g  of two example positions:  g 0  at  the
origin of the plane coordinate frame and g1  at another
position.  All  g  form  the  special  euclidian  matrix
group  SE 2 .  These  matrices  have  the  properties
R∈SO 2  and  p=x ,y ∈2 .  Fig.3 also  gives  an

illustration of  SE 2 . Locally it looks like euclidian
3 ,  but  globally  it  is  a  structure  in  4 .  One  may

describe  it  as  an  infinitesimally  long  tube  with  an
infinitesimally thick wall.

A benefit of using SE 2  is, that its members not
only  describe  positions,  but  also  translations.  The
matrix in (1) describes a translation about x ,y   and
a rotation about  5. When looking at the properties of
3 There is sometimes confusion about the terms
“orientation”, “position”, “location”, etc. Throughout this
paper, we use them as follows: location = where a point is,
orientation = where an object is directed to, position =
location and orientation of an object in space.
4 the columns of a rotation matrix are orthonormal. This
yields to RR

T=RTR=I ⇒RT=R−1
.

5 We use the following terms for rigid body motion: rotation
= act of turning an object about its axes, translation (shift)
= a uniform movement without rotation (WordNet), motion
= rotation and translation. Although at first sight, these terms
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a differentiable manifold, one finds that they also hold
for  SE 2 ,  because  the  general  matrix  group
GL n ={R∈

n×n
: detR≠1}  is the supergroup

of  SE 2  and is also a differentiable manifold. And
GL n  , the group of linear isomorphisms from n

onto  n ,  is  a  differentiable  manifold,  because  it  is
open in vector space  n ,n 6 (it can be seen as
the  inverse  image  of  ∖{0}  in  relation  to  the
determinant map, i.e. GL n =det−1∖{0} ). With a
fixed  base  in  n  we  have  n ,n≈

n×n
 .

The properties of SE 2  yield to the continuous and
differentiable transformation

3∋x ,y ,[cos −sin x

sin cos y

0 0 1]∈SE 2 .

Thus one can combine SE 2  with the manifold part
of  the  articulated  mechanics  in  order  to  obtain  the
entire  configuration  manifold  of  the  mobile  robot
which is done in the next subsection.

Fig.3 –  Matrix group SE 2  for describing
positions

2.3 Bundled manifolds

When combining the two parts of the manifold we
introduced in  the  preceding subsections,  one obtains
the configuration manifold of the mobile robot as

Q=SE 2×S 1×S 1 . (2)

The two  S 1  belong to the angles of the two wheels.
Equation  (2) shows a natural decomposition of Q  in
the sense that SE 2  is the position where we want to

may give the impression of observing a continuous motion,
we mainly use them without considering the evolution of
motion in time.
6the set of all linear maps from n  into n . 

move to, and  S 1×S 1  is with what 'tools' we have to
achieve  that.  SE 2=G  is  called  fibre and
S 1×S 1=M=Q /G  is  called  base.  At  every  base

element  an  orthogonal  fibre  is  attached.  All  fibres
together  form a  fibre  bundle7,  which  in  turn  is  Q .
Fig.4 illustrates  the  configuration  manifold  of  the
mobile robot as a fibre bundle. Note that every fibre
string is a 4-dimensional manifold object (see  Fig.3).
Another  illustration  is  given in  Fig.5:  the  fibres  are
bundled in the sense that the height of every ‘bundle-
ring’ above the base  represents  a unique  position of
the robot  in the plane.  Just as in  Fig.3 two example
positions are shown in the figure: the zero position g 0
and another position g 1 . Note that a bundle-ring again
is  the  entire  torus  surface  since at  every  g  the two
wheels can have arbitrary angles 1,2 .

Fig.4 – Configuration manifold of the robot as a
fibre bundle

Fig.5 – Representations of different positions on
the bundled configuration manifold

7A fibre bundle is a simple geometric structure consisting of
a base space and a fibre space. More precisely it is a triplet
of the manifolds E  (total space), M  (base space) and  the
projection  : E M . For detailed definitions refer to e.g.
[6].
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2.4 Mechanical constraints 
Most  mechanical  systems have  constraints  which

reduce the number of  DoF. One way to characterise
constraints  is  to  distinguish  between  holonomic  and
nonholonomic constraints. For a better understanding
of  different  constraints  refer  to  [13].  Any  rolling
motion  without  sliding  is  nonholonomic  (non
integrable) which is also the case for the mobile robot.
In detail the constraints are

ẋ=/2⋅cos⋅̇
1
̇

2


ẏ=/2⋅sin⋅̇
1
̇

2


̇=/2w ⋅̇1−̇2

(3)

where   is the radius of a wheel and w  is the axial
distance between the wheels. (3) shows no constraint
on  the  shape  variables  i.e.  from  a  starting
1t 0,2t 0 , the system is free to move anywhere
on  the  torus  surface  (Fig.6 left).  Whereas  an
interesting  question  is  what  impact  the  constraints
have on the position in SE 2 .  This  is  answered by
(3)  and  some  physical  deliberations.  At  =0  and
=  the  robot  may  only  move  along  x -,  and  at
=/2  and  =3/2  it  may  only  move  in  y -

direction. Cutting this out of the  SE 2  manifold as
shown  in  Fig.3,  one  obtains  a  structure  we call  the
twisted  band  manifold.  Fig.6 (right)  gives  an
illustration.  This  manifold  structure  is  true  for  all
ground-moving mechanics which have constraints that
do not allow sideway movements. 

Fig.6 – Images of the constrained configuration
manifold

3 Tangent space and tangent bundle
Now we are going to examine the mobile robot in

motion, i.e. there is a q̇≠0 . There are different ways

how to introduce tangent vectors. They can either be
defined  by  coordinate  representation  or  as  velocity
vectors of a curve on manifolds. The set of all velocity
vectors at q∈Q  belongs to a vector space assigned to
q . This is called the tangent space T

q
Q . Naturally it

has the same dimension as Q . For an interval I⊂
and  a  curve  c : I Q  the  tangent  vector  (velocity
vector) of c  at time t 0∈I  is 

ċ t
0
:=T

t
0

c
d

dt
∣
t
0

∈T
c t

0

Q .

With  aid  of  the  tangent  space  one  can  transfer  the
derivation from real calculus to manifolds.  From the
unity of tangent spaces at all points on a manifold, one
can create  the  tangent  bundle TQ=∪

q∈Q
T

q
Q .  The

tangent bundle  TQ  of a manifold  Q  also is a fibre
bundle  with  fibres  F=T

q
Q ,  base  Q ,  and  the

projection  :TQQ . Every base point is traversed
by a fibre. Fig.7 shows how TQ  looks like for one of
the wheels of the robot. When it rotates with constant
speed 1 , we are moving on TQ  at constant ‘height’
above Q .

Fig.7 – Tangent space, tangent bundle and natural
projection of one wheel

A  vector  field  on  a  manifold  Q  is  a  part  (cross-
section) of the tangent bundle TQ . In other words: a
vector  field  assigns  a  tangent  vector  to  every  point
q∈Q .  One can interpret  a  vector  field  as  the  right

side  of  a  system of  ordinary  first  order  differential
equations.

3.1 Lie groups and Lie algebras

Lie  groups  are  shown  to  be  useful  in  robot
kinematics and control, thus we are going to introduce
the basic concepts. A Lie group8 is a manifold, which
additionally has a group structure which is compatible
with the structure of the manifold. Important examples

8a space G  is called Lie group, if: a) G ,⋅  is a group; b)
G  is a n -dimensional differentiable manifold; c) the

mappings G×GG , g ,h gh  and GG , gg−1

are smooth.
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are the matrix groups, which are also Lie groups. One
may refer  to  [6]  for  detailed  proofs  for  the  general
linear  group  GL n   (all  real-valued  nonsingular
n×n  matrices),  and  the  special  orthogonal  and

euclidian  groups  SO 2,SO 3,SE 2 .  For  the
mobile robot we will look closer at  SE 2  in order
to better understand the structure of a Lie group. One
may write SE 2  as 2×SO 2 . Since SO 2  and
2  are Lie groups,  SE 2  is  as well  a  Lie group,

and dimSE 2=dimSO 2dim2=3 . An element
g=p ,R∈SE 2  has the  coordinates  g=x ,y ,

with  x ,y ∈2  and  ∈SO 2 . g ,  written  as  a
3×3 -matrix, is

g=[cos −sin x

sin cos y

0 0 1] .

SE 2  may be identified with the space of all 3×3 -
matrices of the form

g=[R p

0 1] , R∈SO 2 , p∈2

while

g=p ,Rg=[R p

0 1] .

The group structure is given by

g⋅h=p1,R1p2 ,R2=R1p2p1,R1R2  and

g−1=p ,R −1=−RTp ,RT .

Written in coordinates ( SE 2  as a vector space):

g⋅h=(cos
1
x
2
−sin

1
y
2
x

1
,

cos1x 2sin1y2y2,12)  and 

g−1=−cosx−siny , sinx−cosy ,− .

As one can see,  the  two operators  are  differentiable
(differentiable in their components).

To a Lie group G  one can assign a Lie algebra G.
G  is  nothing  else  but  a  collection  of  vector  fields
isomorphic to  the tangent space at the identity T e

G .
Studying the Lie algebra one can derive properties of
the structure of the associated Lie group. With these
properties one can define the exponential map of a Lie
group, which in turn is the link between Lie algebra G
and Lie group G . Since a Lie group in general is not

abelian  ( g⋅h≠h⋅g ),  one  may  introduce  a  left
translation   L

g
:GG  as  Lg

h =g⋅h  and  a  right
translation  Rg

:GG  as  Rg
h =h⋅g ,  which

commute  ( Lg
°R

g
=R

g
°L

g ).  The  left  or  right
translation of a Lie group can be seen as an action9,
which is of certain interest for the robot  kinematics.
We can imagine actions as a motion of the robot in the
plane from one position to another.

In  the  previous  section  we  have  introduced  the
tangent bundle and the tangent space of some simple
mechanical  systems.  Now we are  going to  return  to
our  robot  where  we want  to  examine  the  Lie  group
part  G⊂Q .  Whenever  we  have  actual  or  desired
motions of any non-stationary rigid mechanics, we are
working on a  Lie  group and its  tangent  bundle.  We
have  seen  that  Lie  group  elements  describe  both,
positions  and  translations.  With  the  Lie  group
structure we can express tangent vectors in T g

G  with
elements  of  the  associated  Lie  algebra.  The
corresponding  vector  fields  are  the  set  of  all  left
invariant  vector  fields  (i.e.
g∈G :T

h
L

g
X h =X g⋅h  , for all h∈G , so it does

not vary under any left action). Like vector spaces the
set  of  all  left-invariant  vector  fields  (which  are  also
differentiable, for more details see [21,2]) and  T e

G
are isomorphic, where e  is the identity element. Thus
if we know X  at the identity  e , we know it on the
entire  G  ( X g =T

e
L

g
X e  ). If we write elements

of  T e
G  with  , , then the Lie algebra structure is

defined with help of the Lie bracket (for the definition
refer  to e.g. [19,13]):  [ ,]=[X ,Y ]e ,∀ ,∈G .
Fig.8 gives an illustration of G , its identity e , a left
invariant  vector  field  X ,  and  elements  we  have
discussed so far.

Fig.8 –  SE 2 Lie group with a left-invariant
vector field X

9an action is a differentiable map  :G×M M  so that

e , p =p ,∀ p∈M , and

g ,h ,p =g⋅h ,p ,∀ p∈M ,∀g ,h∈G

where G   is a Lie group and M  is a manifold.
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3.2  The exponential map
The  exponential  map  exp :GG  links  the  Lie

algebra with its Lie group. It is a local diffeomorphism
(i.e. a smooth map with its inverse also smooth). In the
following we will  study Lie algebra and exponential
map of the Lie group SE 2 . Further detailed proofs,
properties,  and  applications  of   exponential  map,
actions, and other useful tools of geometric mechanics
can be found in [6, 21,13]. The Lie algebra of SE 2 ,
denoted as  se 2 , is  se 2=so 2×2 , and can be
identified with 3×3  matrices

=[ 0 −3 1

3
0 

2

0 0 0 ] 10.

Every element of SE 2  one can write as an element
of the Lie algebra with the exponential map:

exp=(

1

3
sin

3



2

3
cos

3
−1,


2

3
sin

3



1

3
1−cos

3
,

3
)

.

With  the  left  translation  one  can  describe  the
velocity  on  a  trajectory  g t ∈G  with  a  single  Lie
algebra element.  The body- and spatial  velocity of a
rigid body are b=g−1⋅ġ  and s=ġ⋅g−1  respectively.
The  physical  interpretations  are  the  translatory  and
rotatory velocity of an object with respect to a body-
and a spatial  coordinate frame. The relation between
both  velocities  is  described  with  the  lifted  adjoint
action  (details  e.g.  in  [2]).  For   SE 2  the  lifted
adjoint action is

Ad
g
=T

eRg−1Lg=

=T
g
R

g−1T e
L

g
=[cos −sin y

sin cos x

0 0 1] .

10as a vector space se 2  is isomorphic with 3  by

=[ 0 − v
1

 0 v
2

0 0 0 ]= ,v ∈3 .

This isomorphism also is a Lie algebra isomorphism by
[ ,]= −  .

3.3 Connections
As outlined above one can describe positions of the

robot with special Lie groups, which in turn are part of
the configuration manifold.  For control  problems we
are interested in the other part of the configuration, the
shape variables. The shape space is Q /G , also called
reduced space. Lie group and shape space create the
fibre bundle.  When speaking of a  trivial  bundle one
can  span  the  configuration  manifold  with  the  base
Q /G  and the fibres  G  attached to every  r∈Q /G .

In  this  context  one  may  introduce  the  so  called
Ehresmann connection. An Ehresmann connection A
is  a  vector-valued  one-form  on  Q ,  so  that
A

q
:T

q
QKer T

q
  is  linear  ∀q∈Q  and it  is  a

projection.  The  kernel  of  Aq  is  called  horizontal
space  and  Ker T

q
=V

q
 is  called  vertical  space.

This means that one can split the tangent space T q
Q

into a horizontal and a vertical part. The tangent vector
is projected onto its vertical part by a connection11 or
principal connection12 (for details on connections refer
to e.g. [2]). One finds that the vertical space is tangent
to the vertical fibre above q∈Q , i.e. all points which
are mapped onto the same point (for  details  refer  to
[6]).

3.4 Constrained distribution

The constrained distribution consists of all tangent
vectors which meet the constraints. A distribution is a
collection of tangent spaces at a point on a manifold,
so it is a partial bundle of its tangent bundle. In other
words a distribution can be represented with linearily
independent differentiable vector fields.  If one writes
the  constraints  as  oneforms  1,2,3 ,  the
distribution  is  

q
=Ker {

1
,
2
,
3
} .  The  tangent

space  T q
Q  can be split uniquely into a vertical part

V
q
=T

q
Orb

q
={

Q

q ,∈se 2} 13,  and  a  horizontal
part, which in case of the mobile robot is equal to the
constraints (3). Then we have V q

∩
q
={0}  (which is

not  valid  for  other  mechanical  systems).  In  other
words,  the  vertical  space  represents  pure  motions  of
the robot on the plane without shape motions, and the
horizontal space represents shape motions, i.e. turning

11a connection is an allocation of  horizontal spaces
H

q
⊂T

q
Q  for every q∈Q , so that T

q
Q=H

q
Q⊕V

q
Q ,

T
q


g
H

q
Q=H

gq
Q  for all q∈Q  and g∈G  and H

q
Q

depends differentiably on q .
12a principal connection is a connection like a Lie algebra
valued oneform on Q . 
13 

Q

q =d /dt
expt 

q ∣
t=0  is the infinitesimal generator

according to an action ∈G .
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wheels,  without  pure  motions.  The  connection
describes the link between them.

4 Conclusion and Outlook
In  this  paper  we  explained  the  basics  of  the

mathematical  framework  necessary  to  model  a
nonholonomic  mechanical  system  (that  includes
almost all mobile robots presently in use) in a way that
divides  the  configuration  variables  in  shape  and
position  classes.  Here  we  only  treated  the  pure
kinematic case [4],  where the group variables do not
interact with the shape variables (the dynamics of the
system  are  constrained  using  only  configuration
velocities).  First  we  choose  the  position  variable
(describing the  position  and orientation  of  the  robot
with  respect  to  an  inertial  frame).  The  remaining
variables  build  the  shape  of  the  system  and  its
variation  induces  the  locomotion.  The  relationship
between  shape  and  position  changes  is  made  by  a
mathematical construction named connection. 

There  are  some  systems  where  the  interaction
between constraints and the group action is not trivial,
producing  momentum  changes  which  result  in
locomotion [18,4]. This interaction plays an important
role  in  defining  a  connection.  The  mathematical
properties of the connection allow to simplify results
for both dynamics and control of locomotion systems.
[7]  and  [20]  have  lead  to  an  understanding  of  the
reduction  process  [4,18]  building  the  mechanical
connection.
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