2-D Monotone spatial indexing scheme with optimal update time

L. DROSSOS¹, S. SIOUTAS², K. TSICHLAS² and K. IOANNOU³

¹ Technological Institute of Messolongi,
Department of Applied Informatics in Administration and Economics
Technological Institute Campus, 30200, Messolongi
GREECE

² Computer Engineering and Informatics department
University of Patras
Building B, University Campus, 26500, Rion, Patras
GREECE

³ Wireless Telecommunication Laboratory, Department of Electrical and Computer Engineering,
University of Patras,
Rion 26500, Patras
GREECE

Abstract - For monotone generated points on the plane we present the Dynamic Monotone Priority Search Tree (DMoPST) in main / external memory with O(1) update time / O(1) block transfers in worst-case. The external version of the structure above promises efficient applications in transaction time Databases systems.

Key-Words: - Databases, Data structures

1 Overview

For monotone or periodical monotone generation of points in the plane we present a new dynamic version of Priority Search Tree, the Dynamic Monotone Priority Search Tree (DMoPST) in main / external memory with O(1) time / O(1) block transfers in worst-case for update operations. Even if the dynamic generation of points constitutes a special case it is the first time a dynamic version of priority search tree is being presented with optimal update time. The best previous results in main / external memory were presented in [10] / [3] and require O(logn/loglogn) time / O(logn) I/O’s respectively for all operations (three-sided lookup queries, insertions, deletions).

1.1 The Classic Priority Search Tree

We will briefly review the priority search tree of McCreight [6]. Let S be a set of n points on the plane. We want to store them in a data structure so that the points that lie inside a half infinite strip of the form \([−\infty, b] \times (−\infty, c]\) can be found efficiently.

The priority search tree is a binary search tree of depth \(O(\log n)\) for the \(x\)-coordinates of the points. The root of the tree contains the point \(p\) with smallest \(y\)-coordinate. The left (resp. right) subtree is recursively defined for the set of points in \(S−/p]\) with \(x\)-coordinates in the left (resp. right) subtree. From this definition it is easily seen that a point is stored in a node on the search path from the root to the leaf containing its \(x\)-coordinate.

To answer a range query with a quadrant \([−\infty, b] \times (−\infty, c]\) we find the \(O(\log n)\) nodes in the search path \(P_b\) for \(b\). Let \(L_b\) be the left children of these nodes, that don't lie on the path. For the points...
of the nodes of $P_b \cup L_b$ we can determine in $O(\log n)$
time which lie in the query-range. Then for each node of L_b
whose point is inside the range we visit its two children
and check whether their points lie in the range. We continue recursively as long as we find
points in the query-range.

For the correctness of the query algorithm first
observe that nodes on the right of the search path
have points with x-coordinate larger than b and
therefore lie outside the query-range. The points of P_b
may have x-coordinate larger than b or they may
have y-coordinate larger than c. If any of these is true
then they are not reported. The nodes of L_b and their
descendants have points with x-coordinate smaller
than b so only their y-coordinates need to be tested.
For the nodes of L_b whose points lie inside the query-
range we need to look further at their descendants.
The search proceeds as long as we find points inside
the query-range. If a point of a node u does not lie
inside the query-range then this point has y-
coordinate larger than c. Therefore all points in the
subtree rooted at u lie outside the query-range and
need not to be searched. From the above discussion
we can easily bound the query time by $O(\log n + k)$,
since we need $O(\log n)$ time to visit the nodes in
$P_b \cup L_b$ and $O(k)$ time for searching in their subtrees.

1.2 The Fusion Priority Search Tree

The main advantage of the fusion technique ([10]) is that we can decide in time $O(1)$ in which
subtree to continue the searching by compressing the
k-keys of every B-tree node using w-bit words.

Willard used as a skeleton structure a B-tree
whose internal nodes have arity between $B/8$ and B,
with the exception of the root that has arity between 2
and B, and whose leaves store the data and all have
the same depth. Each node v stores information about
the y_{max} value of the set of points stored in T_v, it
also stores compressed information into a q-heap
([10]) about the y_{max} values of the respective sons
of v, in order to decide in $O(1)$ time to which of
them he must continue a further searching.

He also proved that, it is possible to devise an
insertion and deletion algorithm for this tree that runs
in worst-case time $O(h)$, where $h=O(\log n/\log \log n)$.
Quadrant and Three-sided Queries can be answered
in $O(h+k)$ worst-case time where k the size of the
answer.

2 The Main Memory DMoPST data structure

We consider the special case of monotone or periodically monotone generated points in the plane.

Definition 1: A dynamic set of n points
$S = \{(x_i, y_i) \mid 1 \leq i \leq n\}$, is monotone iff $\forall i, j : i \leq j,$
$x_j > x_i$ and $y_j > y_i$ (increasing monotone set) or
$y_j < y_i$ (decreasing monotone set).

Definition 2: A set of n points $S = \{(x_i, y_i) \mid 1 \leq i \leq n\}$,
is periodically and uniformly monotone iff we can
divide the plane into space slabs of approximately
equal size each of which is monotone according to
definition 1.

In order to achieve for the above dynamic sets a
special version of a priority search tree with linear
space and $O(1)$ update time we use the bucketing
technique. The essence of the bucketing method is to
get the best features of the two different structures by
combining them into a two-level structure. The data
to be stored is partitioned into buckets B_i, $1 \leq i \leq k$, (see
Fig. 1.a) and the chosen data structure for the
representation of each individual bucket is different
from the representation of the top-level data structure,
representing the $O(n/k)$ collection of
buckets (for similar applications of this data
structuring paradigm see also [7,5,9]). The points of
the Fig. 1.b are generated in a periodical monotone
way. Let t_i, $1 \leq i \leq k$, the ith time period and S_i the
corresponding space slab the points of which are
going to be stored in the 2-level data structure T_i.
During the time the only updateable data structure is
the last one (see the T_j 2-level structure of Fig. 1.b).
For every t_i, $i \geq 1$, we execute a global reconstruction
of a new static priority search tree ST_i ([2,11]) for
the points generated between the time periods t_i and
t_i. Considering the same size of each slab due to
uniform distribution we can spread out the linear
work spent during a global reconstruction on the next
Fig 1: Monotone and periodically monotone trajectories of points

updates between \(t_i \) and \(t_{i+1} \). The \(O(1) \) worst case update cost for the global reconstruction follows.

In the Figure 1 below it is depicted (a) a dynamic set of \(n \) monotone generated points and the corresponding 2-level data structure (b) a dynamic set of \(n \) periodically monotone generated points, uniformly distributed between time periods, and the corresponding data structures. In each time period \(t_i \) the respective 2-level structure \(T_i \) is replaced by the static structure \(S_{T_{i-1}} \). In this way it’s obvious that the only dynamic or updateable data structure is the last one. Due to the uniform distribution among time periods we can also use a dynamic perfect hash table in order to lookup in \(O(1) \) time the respective set of points and as a consequence the corresponding data structure for further searching.

Particularly we use the dynamic perfect hashing strategy of [1]: It’s about a randomized algorithm for the dynamic dictionary problem that takes \(O(1) \) worst-case time for finding the roots of the corresponding (static or dynamic) data structures (see Fig.1.b) and \(O(1) \) amortized expected time for insertions and deletions. It also uses space proportional to the size of the set stored.

We study the two-follow cases:

a) The top-level structure is the classic priority search tree ([6])

a.1) Update time: We will show that making the buckets \(B_i \), \(1 \leq i \leq k \), have size \(O(\log n) \), \(k = O(n/\log n) \) and using as the top-level data structure the Priority Search tree of [4], yields a simpler algorithm.

In addition to the time required to split/fuse buckets, a bucket-rebalancing step may require \(O(\log n) \) worst-case time to insert/delete a bucket representative to/from the top-level tree. The top-level tree is the Priority Search Tree that requires \(O(\log n) \) worst - case update time. Since the total work to rebalance a bucket is \(O(\log n) \), we can perform it with \(O(1) \) work per update spread over the next \(O(\log n) \) updates. In other words, if we can permit every bucket to be of size \(O(\log \hat{n}) \), where \(\hat{n} \) the number of current elements, we can guarantee that between
rebalancing operation performed in the top-level tree there is no possibility for any other such operation to occur and consequently the incremental spread of work is possible.

In the case of Fig. 9.b we must spend an extra update time overhead for updating the Dynamic Perfect Hash Table, that is an $O(1)$ expected amortized time cost.

a.2) Three-sided Lookup Queries:

a.2.1) Monotone Generated points (Fig. 1.a)

Let the $[a,b]x(\sim \infty, c]$ query of Fig.1. The required time is $O(\log(n/\log n)+k_1)=O(\log n+k_1)$ for the binary-searching of k_1 bucket’s representatives (these representatives belong to the answer) in the top-level Priority Search Tree ([4]) and $O(k_2)$ for the sequential searching in the responding buckets until we reach points with $y>c$ (remember that we gain the benefit of y and x ordering simultaneously). So, the total required time is $O(\log n+k)$.

a.2.2) Periodically Monotone Generated points (Fig. 1.b)

The query splits into the follow subqueries (see Fig.1.b): $[a,b]x(\sim \infty, c]= [a,S_2]x(\sim \infty, c]+...+[a,S_{j-1}]x(\sim \infty, c]+[S_j, b]x(\sim \infty, c]$. All except the last one are queries in the appropriate consecutive $ST_2,...,ST_{j-1}$ static structures. The last one is a query in the dynamic T_j structure. So, we pay an extra $O(1)$ worst-case lookup cost in the Dynamic Perfect Hashing Table in order to find the appropriate static structure and $O(k_i)$ cost ($k_i<<k$ and $2\leq i\leq j-1$) for each of the $ST_2,...,ST_{j-1}$ static structures respectively in order to find totally $\sum_{i=2}^{j-1}k_i$ points that satisfy the query. It remains to query the last dynamic structure. Therefore the last subquery requires $O(\log C+k_j)$ time, where C the size of each slab due to the uniform distribution and $k_j+\sum_{i=2}^{j-1}k_i=k$ the total size of the answer. So, in this case the total required time is $O(\log C+k)$.

b) The top-level structure is the Fusion priority search tree ([10])

b.1) Update time: Now we make buckets of size $O(\log n/\log \log n)$ and the $O(1)$ update time follows. In the case of Fig. 9.b we must spend an extra $O(1)$ expected amortized time cost.

b.2) Three-sided Query:

b.2.1) Monotone Generated points (Fig. 1.a)

Let the $[a,b]x(\sim \infty, c]$ query of the scheme above. The required $O(\log n/\log \log n+k)$ time follows while we process the query in the same manner as in a.2.1 case.

b.2.2) Periodically Monotone Generated points (Fig. 1.b)

The required $O(\log C/\log \log C+k)$ time follows while we process the query in the same manner as in a.2.2 case.

We retain the buckets in the appropriate size using the global rebuilding ([6]) technique. We will use two structures: OLD-MAIN and MAIN. Normally only MAIN exists. When the number of transactions on MAIN exceeds half its initial size, MAIN is made into OLD-MAIN and a construction is initiated to build a new (i.e., rebalanced) MAIN from it. Meanwhile insertions, deletions and queries continue on OLD-MAIN, until the new MAIN under construction can take over. Assuming there were n_0 points when the construction of a new MAIN begun, it was shown that the new structure can take over after at most $(1/3)n_0$ transactions. In the sequel, a transaction will always be an insertion or a deletion.

The data structure described above is complicated in the sense that it uses bucketing combined with the global rebuilding method. We can avoid the global rebuilding using the algorithmic techniques of pebble games ([7]).

Remark: In the case of Monotone Generated points, the top-level structure is a min_priority search tree that means the representative is always the first element (point) of each bucket and this one with the minimum y coordinate is stored in the root.

In the case of Periodically Monotone Generated points, we store the points of increasing monotone periods into a number of min_priority search trees and the points of decreasing monotone periods into a number of max_priority search trees. The last one structure stores the representatives which are always the last elements (points) of its buckets and the representative with the maximum y coordinate is always stored in the root.

3. The DMoPST external data structure: A first look.

A first look proposes again a 2-level data structure. That means the data to be stored is partitioned into buckets of $O(\log_N n)$ points and the
chosen as a top-level data structure for representing each individual bucket is the external priority search tree of [3]. Since the total work to rebalance a bucket after an insertion takes $O(\log_2 N)$ I/Os, we can perform it with $O(1)$ work per update spread over the next $O(\log_2 N)$ updates. A second more deeply look discovers some difficulties. In [3] the key idea is used to obtain $O(\log_2 N)$ I/Os in worst case when an insertion occurred is to complete the rebuilding phase performing a splitting on each node of the search path using $O(1)$ I/Os. The split can be finalized using $O(1)$ I/Os by constructing incrementally the Y-sets $Y(u')$ and $Y(u'')$ and the query structures Q_u and Q_u' of the two new nodes u' and u'' that will be created by the split of node u. That means, we must determine the points to promote for $Y(u')$ and $Y(u'')$ before forming u' and u'', so, the data structure will not be a valid external priority search tree and queries will not be performed in the optimal number of I/Os.

4. Conclusion
In this work we have focused on special cases of 2-D range searching constructing for the first time a new dynamic priority search tree with optimal update time. Our next step for future continuation of this work is the externalization of the DMoPST structure which can promise more efficient applications in transaction time Databases systems ([8]).

Acknowledgements
The authors would like to thank the Operational Program for Educational and Vocational Training II (EPEAEK II) and particularly the Program PYTHAGORAS, for funding the above work.

REFERENCES