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Abstract: - A multi-layered perceptron neural network with backpropagation algorithm (MLP/BP) is realized as a 
waveform equalizer for distorted nonreturn-to-zero (NRZ) data recovery in band-limited channels. Moreover, the 
proposed approach can tolerate sampling clock skew and channel response variance. According to simulation 
results, the proposed design can recover severe distorted NRZ data with better performance than LMS DFEs in the 
band-limited channel that the data rate is ten times as much as the channel bandwidth. Under the 20% channel 
response variance and the 30% sampling clock skew, the proposed approach can provide an acceptable 
performance. 
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1   Introduction 
In a wireline digital communication system, the 
source signal is transmitted over an intersymbol 
interference (ISI) channel, corrupted by noise, and 
then received as a distorted nonreturn-to-zero (NRZ) 
signal without zero crossing. It is the noisy signal that 
degrades the system performance. In most cases, the 
additional white Gaussian noise (AWGN) can be 
used to model the background noise. In this work, we 
consider the band-limited channels that the data rate 
is about ten times as much as the channel bandwidth. 
In such channels, the tail of each pulse in the received 
signal will be elongated, resulting in lack of zero 
crossing for the received signal. Moreover, sampling 
clock skew and channel response variance will lead 
to worse performance. Therefore, it is necessary to 
apply data equalizers to recover the original 
waveform from the distorted one in practical 
communication systems [1]. A good equalization 
design can enhance the whole system performance 
with an acceptable cost. 

Conventionally, the NRZ signal recovery is based 
on either linear equalizers (LEs) [1], [2], or decision 
feedback equalizers (DFEs) [1], [2], [6]. The linear 
equalizer can restore the original transmitted signal in 
a band-limited wireline channel, but it also amplifies 

high-frequency noise and severely degrades the 
system performance. 

The decision feedback equalizer employing 
previous decisions to remove the ISI on the current 
symbol has been extensively exploited to serve 
intersymbol interference rejection. The least mean 
squares (LMS) algorithm is used to estimate the 
coefficients of the equalizer [1], [2], [6] whose 
accuracy determines the system performance 

Recently, various equalizer designs based on 
artificial neural networks have been applied to the 
severely distorting signal recoveries. Having the 
capability of classifying the sampling pattern and 
fault tolerance, artificial neural networks have more 
flexibility and better performance than conventional 
equalization techniques. 

Based on the MLP/BP neural network [3-5], the 
feedforward equalizers [7], [8], and the decision 
feedback equalizers [9], [10] have been widely used 
to NRZ signal recovery in severe ISI channels. 

For high speed wireline data communication, it is 
familiar to use waveform equalization technique to 
improve the data rate or reduce the error rate [11-13]. 
In practice circuits, the channel responses of different 
interconnect paths of parallel data I/O are different. 
The receiver must detect correct data under such 
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variance. Furthermore, sampling clock skew makes 
the problem more severely. 

This work is based on the most popular MLP/BP 
neural network [3-5]. By selecting suitable training 
patterns, the MLP/BP-based DFEs can tolerate larger 
sampling clock skew and more channel response 
variance, meaning that we can use a preset equalizer 
to replace an adaptive one. 

This paper is organized as follows. The equivalent 
channel model, and the proposed approach are 
presented in section 2 while section 3 shows the 
simulation results. Finally, the conclusions are 
presented in section 4. 
 
 
2 Proposed Architecture 
In this section, an equivalent channel model is 
presented first followed by the proposed approach. 
The architecture and configuration of the proposed 
method are discussed in detail. 
 
2.1 Channel Models 
If the transmitted data rate is higher than the channel 
capacity, the received signal pulse is unable to 
complete its transition within a symbol interval. The 
equivalent model for the band-limited channels is 
shown in Fig. 1 where a finite impulse response (FIR) 
filter is used to model the ISI channel response with 
the AWGN as the background noise. 
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Fig. 1.  Equivalent Model for the Band-Limited 
Channel. 

 
The ISI channel response with AWGN can be 

written as follows: 
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where H(z) is the transfer function of the ISI channel; 
L is the length of the channel response; xk is the input 
sequence; yk is the channel output which is warped by 
ISI only; nk is the AWGN; ŷk is the received signal 
which is distorted by both ISI and AWGN. 

In this work, several band-limited channels, with 
different sampling clock skew, are used to verify the 

proposed approaches. These channels are practical in 
many wireline communication systems, whose 
transfer functions of several band-limited channels 
are shown in Table 1. These channels with different 
F3dB/F ratio represent different but analogous channel 
conditions. For example, the channel responses of 
different interconnect paths of parallel data I/O are 
similar. The frequency responses of these channels 
are illustrated in Fig. 2. The transmitted signal is 
expected to be deteriorated substantially by the 
band-limited channel and the AWGN. 
 
 

Table 1 Transfer Function of Several 
Band-Limited Channels 

 
ID F3dB/F Channel Impulse Response 

1 0.08 [0.3951 0.2390 0.1446 0.0875 0.0529] 

2 0.09 [0.4319 0.2454 0.1394 0.0792 0.0450] 

3 0.10 [0.4665 0.2489 0.1328 0.0708 0.0378] 

4 0.11 [0.4990 0.2500 0.1252 0.0627 0.0314] 

5 0.12 [0.5295 0.2491 0.1172 0.0551 0.0259] 
 
 

 
Fig. 2.  Frequency Responses of Several 

Band-Limited Channels 
 

Furthermore, sampling clock skew makes the 
problem more severely. Base on foregoing channels, 
clock skews between +/- 30% are considered to 
represent a worse situation of the practical wireline 
high speed communications. 
 
2.2 The MLP/BP-based DFE 
Artificial neural networks are systems that are 
deliberately constructed to make use of some 
organizational principles resembling those of the 
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human brain. An artificial neural network consists of 
a set of highly interconnected neurons such that each 
neuron output is connected to other ones or/and to 
itself through weights with or without lag. Recently, 
there are many different artificial neural networks 
had been proposed, but the multi-layer perceptron 
neural network with backpropagation algorithm 
(MLP/BP) is the most important and most popular 
one. [3-5] 

The MLP/BP neural networks are supervised 
learning. It means that a training set includes an input 
vector and a desired output vector. The training 
patterns must represent the system characteristic. 
Suitable training patterns can improve the training 
quality. 

Using the MLP/BP neural networks to solve 
problems includes two phases, one is training 
procedure and another is test procedure. In the 
training phase, we use the gradient steepest descent 
method to minimize the error function for updating 
the weights. After that we apply the training results to 
obtain the network response in the test phase. The 
outcome is really a sub-optimal solution 

Different network configurations, different initial 
condition or different learning rate, will lead to 
different performance. In general, we could perform 
quite a few independent runs and choose the most 
suitable outcome as the final solution. In this work, 
we execute fifty independent runs and select the best 
one as the final result. 

The block diagram of the MLP/BP-based DFEs is 
shown in Fig. 3. This MLP/BP-based DFEs is the 
single hidden layer MLP architecture. The inputs of 
the MLP/BP-based DFE consist of feed-forward 
signals, which come from the input symbols by a 
tapped-delay-line register, and feedback signals, 
which come from previous decisions by another 
tapped-delay-line register. 
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Fig. 3. MLP/BP-based DFEs 
 
 

3   Simulation Results 
In this work, the performance of the MLP/BP-based 
DFE is evaluated through the simulations for the 
distorted NRZ signal recovery in the band-limited 
channel that the data rate is ten times of the channel 
bandwidth. 

All equalization schemes in this work have eleven 
symbols in the forward part and five symbols in the 
feedback part. The number of neurons in the input 
layer is equal to 16. The MLP/BP-based DFEs uses 
the single hidden layer MLP architecture. The 
number of neurons in the hidden layer is 2 times of 
that in the input layer. Since all the proposed 
equalization schemes have a single output, the 
number of neurons in the output layer is equal to 1. 

In the training procedure, the length of the training 
set is equal to 104 symbols and the total training 
epochs are 102. The two-phase learning is used with 
the learning rate of 0.5 when the mean square error of 
the training set is larger than 10-3, and the learning 
rate of 0.125, otherwise. When the training epochs 
exceed eighty percent of the total epochs, the best 
parameters will be recorded to achieve the lowest 
mean square error of the training set in the last twenty 
percent of the training epochs. Hence the steady-state 
training results can be recognized. In fact, the 
simulations indicate no unstable problems as all 
training processes are converged. 

Because different initial conditions lead to 
different effects, the non-training evaluation set that 
has 105 symbols is used to examine the training 
quality of numerous independent simulation 
outcomes. After numerous independent training and 
evaluation runs, those yielding better outcomes will 
be chosen to perform a long trial with the test set, and 
then the best one will be the final test result. The 
length of the test set is 106 symbols, and the 
evaluation set is a subset of it. 

At first, a band-limited channel (Channel 3) 
described by the transfer function, H3=0.4665 + 
0.2489z-1 + 0.1328z-2 + 0.0708z-3 + 0.0378z-4, is used 
to estimate the system performance of the LMS DFE 
and the MLP/BP-based DFE, where the training 
noise and the evaluation noise are assumed to be 
SNR=20dB, and SNR of the test signal is between 
10dB and 25dB. This channel response indicates that 
the data rate is ten times of the channel bandwidth. 

Subsequently, several different band-limited ISI 
channels (Channels 1, 2, 4, and 5) are used to 
describe different channel bandwidth vs. data rate 
ratios that the data rates are eight, nine, eleven, and 
twelve times the channel bandwidth, respectively. 
The training result of Channel 3 is applied to these 
channels, directly. These experiments are used to 
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evaluate the tolerance under different channel 
response variances. The BER performance for the 
LMS DFE and the MLP/BP-based DFE in different 
channels is shown in Fig. 4. The proposed approach 
can outperform the LMS DFE. 
 
 

 
Fig. 4. BER performance for different types of 

equalizers in different channels 
 
 

At last, -30%, -20%, -10%, +10%, +20%, and 
+30% sampling clock skews are considered, 
respectively. Similarly, the training result of Channel 
3 is applied to these situations, directly. The 
comparisons of the BER performance for the LMS 
DFE and the MLP/BP-based DFE in different 
channels with different clock skews are shown in Fig. 
5, Fig. 6 and Fig. 7, respectively.  
 
 

 
Fig. 5. BER performance for different types of 

equalizers with different clock skews in Channel 1 
 
 

 
Fig. 6. BER performance for different types of 

equalizers with different clock skews in Channel 3 
 
 

 
Fig. 7. BER performance for different types of 

equalizers with different clock skews in Channel 5 
 
 

In view of different channel response variances 
without sampling clock skew at SNR=20dB, the BER 
performance of the LMS DFE and the BPN DFE is 
shown in Fig. 8(a). Considering different clock skews 
in different channels at SNR=20dB, the comparisons 
of the BER performance for the LMS DFE and the 
BPN DFE are shown in Fig. 8 (b) to Fig. 8(f). 

From Fig. 5, Fig. 6 and Fig. 7, the proposed 
approach reports better BER performance under +/- 
20% channel response variances and +/- 30% 
sampling clock skews. The advantage of the 
proposed approach can be represented in Fig.8. As 
the variances increase in the wireline communication 
environment, the proposed approach achieves more 
improvement over the LMS DFEs. 
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Fig. 8. BER performance for different channel 

conditions at SNR=20dB 
 
 
4   Conclusion 
The simulation results show that the proposed 
equalizer can provide a significant improvement over 
the LMS DFEs in band-limited channels that the data 
rate is about ten times of the channel bandwidth. 
Moreover, the proposed approach can tolerate clock 
skew and channel response variance. The clock tree 
design and data interconnection planning can be 
simplified. Because the MLP/BP-based DFEs can 
tolerate larger sampling clock skew and more 
channel response variance, we have an opportunity 
that uses a preset equalizer to replace an adaptive one 
for low cost. 
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