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Abstract:- Certain aspects referring to the energy consumptions in the electrical drives with D.C. motors are 
presented. The possibilities of the decrease of the energy losses are emphasized; these possibilities appear 
especially in the transient period of the speed change. A simple structure for suboptimal control is proposed. 
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1   Introduction 
The aim of this paper is to present some energetic 
aspects regarding the electromechanical transient 
process of the electrical drive systems with D.C. 
motor and to emphasize the great possibilities of 
the reducing energy consumption in this case. 
There are many papers and books which present the 
energy consumption of the electrical drives and 
their optimal control, but we consider that it is not 
sufficient underlined the possibilities of the energy 
losses decrease. 
 Some previous results of the authors have 
indicated the possibilities of the diminution of the 
energy losses in the rotor winding up to 25…30% 
if the optimal control is applied (by comparison 
with the cascade control). This amount of the 
reduction is not exaggerated if we take into account 
that these losses are at least equal with the variation 
of the kinetic energy, as it will be indicate below. 
Since the goal is to emphasize the general energetic 
aspects and not an exact computing of the energy 
components, a simplified model will be considered. 
Mainly, the electromagnetic transient processes are 
neglected and therefore, the rotor current is adopted 
as control variable. 
 Starting from the results obtained on this basis, 
a simple structure for suboptimal control is 
proposed. 
 The main conclusions of this paper are valid for 
different types of the drive motors. For simplicity 
only the D.C. motors case is presented. 
 
 
2   Energy Consumptions in the 
Transient Process 
We shall consider the following model for an 
electrical drive with a D.C. motor [3]: 

eu(t) Ri(t) c (t)= + ω  (1) 
 

mc i(t) J (t) m(t)= ω + , (2) 
 
where u(t) and i(t) are the rotor voltage and current, 
respectively, ω(t) is the rotor speed, m(t) is the load 
torque, R is the rotor winding resistance, J is the 
inertia, and ce, cm are motor parameters. We 
suppose that m(t) = constant on the interval [0,T] of 
the transient process and the rotor inductance can 
be neglected. 
 From (1) and (2) we can establish the Laplace 
transforms for ω(t) and i(t): 
 

m e e m

1 1 R(s) U(s) M(s)
T s 1 c c c

⎡ ⎤
Ω = −⎢ ⎥+ ⎣ ⎦

 (3) 

 

m

m m

T1 1I(s) sU(s) M(s)
T s 1 R c

⎡ ⎤
= +⎢ ⎥+ ⎣ ⎦

, (4) 

 
where  m e mT RJ / c c=   is the electromechanical 
time constant of the drive system. 
 The electrical power received from the electric 
supply is 
 

J ep(t) u(t)i(t) p (t) p (t)= = + , (5) 
 
where 
 

2
Jp (t) Ri (t)=  (6) 

 
is the Joule power loss and 
 

e e m ep (t) c (t)i(t) c i(t) (t) m (t) (t)= ω = ω = ω  (7) 
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is the electromagnetic power, which corresponds to 
the electromagnetic torque me(t). Certain quasi 
constant losses (e.g. iron and mechanical losses, the 
losses of the brushes contacts) were neglected. In 
this case, the electromagnetic power corresponds to 
the mechanical power pM(t) delivered to the driven 
devices. This last one contains two components: 
one is the useful power p2=mω, and the other is the 
power developed for acceleration. 
 With the mentioned assumptions, we can 
consider 
 

J Mp(t) p (t) p (t)= +  (8) 
 
Corresponding to (8), the energy consumptions on 
the interval [0,T] is 
 

T T

J M J M
0 0

W W W p (t)dt p (t)dt= + = +∫ ∫  (9) 

 
We shall consider a non load motor (m=0); in this 
case, pM(t) is the power developed for acceleration. 
Our first goal is to establish the weight of the two 
terms in (9). For this purpose, we shall compute 
ω(t) and i(t) for a step variation U of u(t), using for 
instance (3) and (4): 
 

mt / T

e

U(t) (1 e )
c

−ω = −  (10) 

 
mt / T

pi(t) I e−= , (11) 
 
where Ip is the starting current value. 
 In this case, the energy loss in the winding on 
the interval [0,T] is 
 

m
2T
p m 2T / T2

J
0

RI T
W Ri (t)dt (1 e )

2
−= = −∫  (12) 

 
 The energy developed for acceleration is 
 

T T

a e m
0 0

W m (t) (t)dt c i(t) (t)dt= ω = ω∫ ∫ . 

 
m mT / T 2T / T

a m p m
e

U 1 1W c I T ( e e )
c 2 2

= − + . (13) 

 
 The duration of the transient process is about 
T=4Tm. For this value of T, the exponentials in (12) 

and (13) can be neglected. Tacking into account 
that ce=cm and U=RIp, from (12) and (13), yields 
 

2
2m m

J a p
U T TW W RI

2R 2
= . (14) 

 
 Therefore, for no load drive system, the energy 
developed for acceleration and the Joule energy 
loss are equal. For the non zero load torque, the 
rotor current increases and the weight of the energy 
loss is greater. 
 In conclusion, in the transient period of 
acceleration obtained for a step variation of the 
supplied voltage, the energy loss represents at least 
half of the energy consumption. Therefore, a 
suitable control of the rotor current will allow to 
diminish the Joule losses. 
 
 Let now consider a step variation of the load 
torque, for instance from zero to m0. The current 
variation in this case is 
 

mt / T0

m

mi(t) (1 e )
c

−= −  (15) 

 
 If we neglect again the small values of the 
exponential, the energy loss results 
 

2
' 0 m
J 2

m

Rm TW
2c

. 

 
 One obtain for the rated torque 
 

' 2 m
J n

TW RI
2

, (16) 

 
where In is the rated value of the current. 
Since n pI I , from (14) and (16) it results 

'
J JW W . Therefore, the Joule losses are 

significantly smaller in the transient process caused 
by the variation of the load then for the transient 
process determined by the variation of the rotor 
voltage. 
 
 
3   Optimal Control 
In order to obtain a good behaviour of the system 
and a reduced energy consumption, it is 
recommended to adopt an optimal control, using a 
quadratic criterion 
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T
2 21

d 1 d
0

2 2
2

s 1I [ (T)] [q ( (t))
2 2

q i (t) pu (t) ru(t)i(t)]dt

= ω −ω + ω −ω

+ + +

∫  (17) 

 
 The criterion (17) is used in the problems with 
free end-point. The first term penalizes the 
difference between the desired value ωd and the 
final value ω(T). The first term in integral penalizes 
the mean transient error of the speed and the 
second one refers to the energy losses. The next 
term penalizes the great value of the control 
variable u(t) and the last one refers to the global 
energy consumption. In the problems with fixed 
end-point, s1 = 0 and it is imposed to achieve 
ω(T)=ωd. 
 Since our goal is to study the energetic aspects 
of the drive system control, we shall consider only 
the criteria in the form 
 

T
2

J
0

I Ri (t)dt= ∫  (18) 

 
and 
 

T

T
0

I i(t)u(t)dt= ∫  (19) 

 
Note that the optimal control is equivalent in the 
both mentioned cases if the load torque m is 
constant. Indeed, based on (1), 
 

T T
2

T e
0 0

I c (t)i(t)dt Ri (t)dt= ω +∫ ∫  (20) 

 
The first integral in (20) can be expressed as 
 
T T

e e
m0 0

2 2

1 dc (t)i(t)dt c (t) (m J )dt
c dt

Jm[ (T) (0)] [ (T) (0)]
2

ω
ω = ω + =

= α −α + ω −ω

∫ ∫
 (21) 

 
(α is the angular displacement). For a given m, the 
last expression is constant. Therefore, the 
difference between the criteria (18) and (19) is 
constant, and the optimal control leads to similar 
results in both cases, so that only the criterion (18) 
will be considered below. 

 The optimal control problem refers to the 
criterion (18) and the system (1), (2), with imposed 
terminal states ω(0) and ω(T). 
 The Hamiltonian [2], [3] of the problem is 
 

2
m

1H Ri (t) (t) (c i(t) m)
J

= + λ −  

 
(λ is the co-state variable). 
 From the necessary condition H(.) / i 0∂ ∂ = , we 
find i(t)=const.=i0, and then 
 

2
J 0I Ri T=  (22) 

 
 In this case, if ω(0)=0, 
 

m 0
1(t) (c i m)t
J

ω = −  (23) 

 
and 
 

d m 0
1(T) (c i m)T
J

ω = ω = −  (24) 

 
 If T is substituted from (24) in (22), we can find 
the optimal value of the current from the condition 

J 0I / i 0∂ ∂ = : 
 

*
0

m

mi 2
c

= . (25) 

 
 On the other hand, if we substitute i0 from (24) 
in (22), we find the optimal T from the condition 

JI / T 0∂ ∂ = : 
 

* dJT
m
ω

=  (26) 

 
 The above expressions put in evidence some 
interesting aspects: 
- the optimal current is constant (it has a double 
value of the steady-state current); 
- the energy losses do not decrease if we adopt a 
current less then the value given by (25), because 
this implies to increase the time of the transient 
process; 
- if the current  *

0i  is adopted, the necessary time to 
achieve the desired speed is given by (26). 
- The minimum energy loss is 
 

( )* 2 2 2
J m m dI 4RTm / c 4 RJ / c m= = ω  (27) 
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- If the drive system starts with a constant voltage, 
the consumed energy in the transient period results 
from (9) and (14) 
 

2 2 2
m p m nW RT I RT I= = µ , 

 
where 

npI / Iµ =  (usually 6...8µ = ). 

 If we consider that mT 4T≅  then 
 

*
JW / I 3≅  

 
(depending on µ). Therefore, the energy 
consumption can be reduced by three times by 
comparison with the direct start of the drive. 
 Of course the direct voltage supply is rarely 
used, but the optimal control remains the most 
advantageous procedure by comparison with other 
methods. This aspect will be pointed in the next 
section. 
 
4   Suboptimal Solution 
Implementation 
The above presented results show a simple way for 
optimal control law implementation: the rotor 
current given by (25) has to be provided. This 
control implies to estimate the load torque m at the 
beginning of the optimization process [4]. 
 Of course, the desired value *

0i  cannot be 
instantaneously obtained, because the current is not 
directly controlled, but by means of the rotor 
voltage. This fact introduces an unavoidable delay 
of the increase of the current. Therefore, the 
solution will be suboptimal, but the difference is 
not significant comparatively with the optimal 
solution if a suitable control loop is used. 
 The simplest control algorithm is the following: 
- establish the current at the value given by (25), 
for t< T* given by (26); 
- adopt mi(t) m / c=  for *t T≥ ; this current value 
ensures the desired steady-state speed ωd. 
 This open loop control can occurs errors if the 
estimation of the parameters and of the torque is 
not exact. More convenient is to adopt a closed 
loop control, based on the speed error 

d(t) (t)ε = ω −ω . The main steps of the algorithm 
are: 
(1o) For (t) ,ε ≥ δ   δ>0,  put *

0i(t) i= . 

(2o) After the first moment for which (t)ε < δ, 
adopt a suitable feedback linear control for the 
drive system. For instance, a PI controller can be 

used; the output of this controller establishes the 
reference for the rotor current. 
 In addition, certain restriction has to be 
introduced: 
- In order to avoid a great length of the transient 
process, one adopts a limit value Tlim if the value T* 
given by (26) exceeds Tlim. In this case, the 
imposed rotor current will result from (24): 
 

d
0

m lim

J1i m
c T

⎛ ⎞ω
= +⎜ ⎟

⎝ ⎠
 (28) 

 
- A limit value of the current ilim will be adopted if 
the value given by (25) is very high. 
 Of course, the energy loss increase if one of the 
mentioned restrictions is activated, but these 
limitations have to be introduced. 
  
 The above algorithm was tested via numerical 
simulation. Some of the results are presented 
below. The results refer to a drive system with a 
D.C. motor having the following rated data: rotor 
voltage U=110 V, rotor current I= 1.3 A, rotor 
resistance R=3.1 Ω, motor constants ce=0.58 
Vs/rad, cm=0.58 Nm/A, inertia J=0.028 Nms2/rad, 
rated torque M=0.78 Nm. 
 The Fig 1…4 present the system behaviour for 
the imposed speed ωd=25 rad/s and for different 
load torques (0.2, 0.5, 0.78, 1.3 Nm, respectively). 
In the second and third cases no restriction is 
activated. The Fig. 1 presents the case when the 
restriction limT T≤  interferes ( limT 2s= ) and the 
Fig. 4 corresponds to the case when the current is 
limited ( limi 2.3I 3A= ≅ ) 
 A change of the control law was performed in 
all cases for *t T>  (or for limt T> ), as it is 
indicated in the above algorithm. 
A transient process of the current increase was 
considered in all cases. 
 The last figure presents the behaviour of the 
optimal system (for m=0.78 Nm) when the control 
variable is the rotor voltage u(t) and the 
electromagnetic transient process is not neglected. 
A criterion in the general form (17) was adopted, 
with the final time T=0.3s. A change of the control 
law was introduced for t > 0.95T, in order to 
maintain the desired steady-state value of the 
speed. The results are obtained based on the 
algorithm indicated in [5], [6]. One can remark that 
the shapes of curves i(t) and ω(t) are rather likewise 
for the suboptimal and optimal solution, 
respectively. 
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Fig. 1 The system behaviour for m=0.2Nm and 

T<Tlim 
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Fig. 2 The system behaviour for m=0.5Nm without 

restrictions 
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Fig. 3 The system behaviour for m=0.78Nm 

without restrictions 
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Fig. 4 The system behaviour for m=1.3Nm and 

i<ilim 
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Fig. 5  The system behaviour in the optimal control 

case (m=0.78Nm) 
 

 The energy losses IJ on the interval [0,T] and Jt 
on the interval [0,Tt] of the transient process were 
computed for the first four cases and are presented 
in the next table. 
 The computed energy IJ is smaller in each case 
with about 3 – 4% then ones resulted from (22) 
because of the transient increase of the current. 
These energy losses correspond to the minimum 
given by (27) for the second and third cases, when 
no restriction are activated, and they are greater 
then the minimum value (27) for the other 
situations. 
 

m (Nm) T (s) Tt (s) IJ (J) It (J) 
0.2 1.96 2.5 5,36 5.73 
0.5 1.39 2 12.48 14.23 
0.78 0.91 1.5 19.6 22.37 
1.3 1.71 2.5 45.55 58.49 
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 In the optimal control case, presented in the Fig. 
5, the energy loss on the interval [0,T] is 28.53 J, 
and the total energy loss on the transient interval is 
It=29.98 J. These values are greater then ones 
obtained for the suboptimal control for the same 
value of the torque (m= 0.78 Nm) because the 
adopted criterion refers not only to energy losses, 
but involves other terms too. Also, a very small 
value for the final time (T=0.3 s) was adopted. 
 The energy consumption in this case is less with 
25…30% as in the usual cascade control case [3], 
[4], depending on the weight matrices in the 
criterion. 
 
 
5   Conclusions 
An optimal control problem referring to an 
electrical drive version is studied. This case is 
approached as a linear quadratic optimal problem. 
 The winding energy losses represent a great 
amount of the total energy consumption of the 
drive system with D.C. motor in the transient 
process produced by a step variation of the rotor 
voltage. 
 A suitable control of the rotor current leads to a 
significant decrease of the energy losses. 
 A simple suboptimal algorithm is presented and 
a comparison with the optimal solution is 
performed. 
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