
Sensor Failure Compensation Techniques for HV Bushing Monitoring
using Evolutionary Computing

SIZWE M. DHLAMINI*, FULUFHELO V. NELWAMONDO**, TSHILIDZI MARWALA**

Abstract: - The work proposes the application of neural networks with particle swarm optimisation (PSO) and
genetic algorithms (GA) to compensate for missing data in classifying high voltage bushings. The
classification is done using DGA data from 60966 bushings based on IEEEc57.104, IEC599 and IEEE
production rates methods for oil impregnated paper (OIP) bushings. PSO and GA were compared in terms of
accuracy and computational efficiency. Both GA and PSO simulations were able to estimate missing data
values to an average 95% accuracy when only one variable was missing. However PSO rapidly deteriorated to
66% accuracy with two variables missing simultaneously, compared to 84% for GA.

Key-Words: - Bushings, DGA, Particle Swarm Optimisation (PSO), Genetic Algorithms, Autoencoder,
Missing data, Regression

1 Introduction
This work investigates tools that compensate for
sensor failure in systems that are used for condition
monitoring of high voltage bushings. Sensor failure
is a concern that needs to be taken into account
when designing an automated system of bushing
condition monitoring. If a sensor fails on an online
bushing monitoring system and the system trips a
transformer, the financial and legal consequences
can be serious. A failed sensor may take a few
hours or months to repair so one will need to
answer the following questions before
implementing an online diagnostics system. What
happens if one or more of the sensors fail? How
many sensors can fail before the online system is
rendered ineffective?

Recognising the value of artificial intelligence
and the risks associated with its usage, Cigre
formed Study Committee 15 WG 11 in 2002 with
the task of standardising and improving
applications of data mining techniques within
power systems [1]. McGrail, et al. [1] identified
several areas in reliability centred maintenance that
can be improved by using artificial intelligence
online and offline. Artificial intelligence (AI) can
add significant value in power systems operations,
maintenance and control, by providing a single
engine to execute the critical role of data-fusion
[2]. However, it is also clear that AI systems need
to be robust and reliable.

Some of the methods used previously to
account for missing data include regression
techniques by Jackson [3] as well as Madow, et al.
[4] who used principal component analysis.
Abdella and Marwala [5] proposed a method of
accurately compensating for missing data using an
autoencoder. Markey and Patel [6] chose to use
zeros where there was missing data. Other work by
Ghahramani [7] and Tresp [8] also used regression
to address the problem of missing data. The
accuracy of the solution derived by replacing
missing data with averages or zeros or an iterated
number depends on whether the final diagnosis
decision is based on the missing variable alone, or
if that decision depends collectively on all the
variables. The accuracy of the approximated
variable will be considered in this paper.

What is important at all stages in evaluating
data is to note that data or measurements or
numbers by themselves have little meaning, and
historically human intervention is required before
decisions can be made and executed. Artificial
Intelligence gives the option to autonomously
transform, correlate and interpret data, so that it
becomes valuable knowledge.

2 Why Missing Data is a Problem
The first reason for concern when a sensor fails is
that no information is available for a particular

*Eskom, Distribution Technology
Private Bag x1074, Germiston, 1400

SOUTH AFRICA

**School of Electrical and Information Engineering
University of the Witwatersrand, Private Bag x3,

Johannesburg, 2000,
SOUTH AFRICA

http://dept.ee.wits.ac.za/~marwala/

Proc. of the 5th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18, 2005 (pp430-435)

measured parameter, and that missing variable
might be important. The second reason to be
concerned is that the processor of the online
diagnostics tool will identify an undefined value
where there is missing data due to sensor failure.
The third reason for concern is that data from a
sensor can become corrupted due to loss of
calibration or excessive noise. The problem is that
analytical tools such as neural network, fuzzy set
theory, principal component analysis, etc., cannot
process undefined values. Currently there is no
method for specifying missing data within a neural
network or fuzzy or toolbox, so missing data must
be approximated prior to processing. For
multivariate data, five methods are available to
address missing data, namely: (1) average values
of previous values of that variable; (2) average
values of the training set data for that variable; (3)
using zero where there is missing data; (4) deleting
the variables that are undefined; and (5) finding a
correlation between the missing variable and the
remaining variables. Using a constant, such as
averages or zeros or deleting the variable
completely, provides incorrect solutions, so these
options cannot be applied as a generic solution to
missing data problems. Iterative methods that
reduce dimensionality of data can be used to look
for correlation between the measured data. This
work approximates data which missing at random
(MAR), missing completely at random (MCAR)
and non-ignorable data as described in Little and
Rubin [9].

3 Techniques to Compensate for
 Missing Data
There are many methods of data fusion for
extracting features among variables of highly
dimensional data, among these are dimension
reduction techniques such as Principal Component
Analysis (PCA), Fisher Linear Discriminant
(FLD), Multi-dimensional Scaling (MDS),
Independent Component Analysis (ICA), Factor
Analysis (FA), and Auto associative neural
network encoder (autoencoder).

All the above methods except autoencoders
are dimension-reduction techniques, in the sense
that they can be used to replace a large set of
observed variables with a smaller set of new
variables, whilst preserving all of the original
information. PCA takes advantage of redundancy
of information and simplifies data by replacing a
group of variables with a fewer new variables,
called principal components. Each principal

component is a linear combination of the original
variables. All the principal components are
orthogonal to each other so there is no redundant
information. Everitt and Dunn [10] found that FA
works well for finding correlations among data, in
contrast to PCA which only summarises data using
fewer dimensions. MDS is used to detect
underlying dimensions that allows one to explain
observed similarities or dissimilarities between the
investigated objects. MDS is comparable with FA,
the only difference being that FA tends to extract
more factors than MDS, forcing the user to
manually interpret the results; as a result, MDS
often yields more useful solutions. Welling and
Webber [11] established that ICA searches for
directions in data-space, which are independent
across all statistical orders. ICA is related to
principal component analysis and factor analysis,
yet ICA is a much more powerful technique,
because ICA is capable of finding the underlying
factors or sources when the classic methods such
as PCA and FA fail completely. Although PCA
finds the minimum number of components that
best represents the data, this best representation is
in the least square sense and it does not guarantee
any usefulness for discrimination. One needs to
reduce the dimensionality, under some constraint
of maximizing the class discrimination.
Maximizing the discrimination can be achieved by
increasing the inter-cluster distances and reducing
the intra-cluster distances.

These distances are obtained using between
and within class scatter matrices through the FLD
method. FLD is referred to as multiple
discriminant analysis (MDA) when the number of
classes of data exceeds two.

Dimension reduction of original complete data
can be used to generate a smaller data set, which
can then be enlarged into an approximation of the
original data set using a prediction neural network
(NN). If there is missing data in the large data set,
one can ignore the missing variable and use a
dimension reduction technique with the available
variables and then run the output of the PCA or
FLD, etc., through a neural network to regenerate
the original complete data set with the
approximated variable. The above approximation
process has many steps where errors can be
introduced. For this reason this paper will evaluate
the autoencoders only.

4 Autoencoder
Autoencoders use the principle of contractive

Proc. of the 5th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18, 2005 (pp430-435)

mapping to locate a point of convergence given a
set of known sensors’ data and some unknown
sensor data. Contractive mapping occurs when the
output distance between two points is less than the
input distance between the same points.
Mathematically it is a mapping O: X→X on a
complete metric space (X, d) in which, for any x
and y in that space [12]:
 () ()yxdkOyOxd ,, ⋅≤ (1)
where 10 ≤≤ k

Autoencoders are an application of the
Banach Fixed-Point Theorem, which states that, if f
is a contractive mapping, then there exists a unique
fixed point x0 for which f(x0) = x0. Moreover, there
exists a sequence {xn}, for which any element xn+1
= f(xn), converges, and that convergent point is xo..
Fig. 1 shows the structure of an autoencoder.
Thompson, et al, [12] successfully applied an
autoncoders to restore missing sensors by
minimising the error between the missing sensor
inputs and outputs and also minimising the error
between the entire input pattern and output pattern
using both missing and known sensors to achieve a
final answer.

The input to the network is two vectors whose
total dimension is n. By definition the input
dimension and the output dimension are the same
in an autoencoder, while the hidden layer has a
lower dimensionality than the input/output. As a
rule the ratio of input to hidden layer neurons is
2:1, as in [13]. The input into the neural network is
given by x. The first vector, xk, is the set of known
sensor values for a given input pattern. The second
vector is xm, the set of missing sensor values. The
autoencoder that is used in this paper is a feed-
forward multilayered perceptron (MLP). The
parameter wijk is the matrix of weights whose (i, j)th
element is the weight connecting the ith known
sensor value to the jth neuron in the hidden layer;
wijm is the matrix for the missing sensors, b1 is the
vector of bias weights for the first layer; wkjk and
wkjm are the weights on the output. Within the input
layer the input is transformed from x into a using
the weights (wji*) and baises (bj) [14].

�
=

+⋅=
d

i

jijij bxwa

1

* (2)

Within the hidden layer the input is further
transformed using an activation function, such as:

()
�
�

�

�

�
�

�

�

+

−== ⋅−⋅

⋅−⋅

jj

jj

acac

acac

jj
ee

ee
az tanh (3)

The variable c is a constant term. In the output
layer the input is further transformed into a
variable which can be optimised using weights.

�
=

+⋅=
m

j

kjkjk bzwa

1

* (4)

At the output stage the variable is passed
through another activation function.

Fig.2. Autoencoder architecture

b2 b1

wjim
wkjm

 Hidden Layer

x1

x2

•

•

xn

Input Output Layer

•

zq

z1

y1

y2

•

•

yn

xm

xk

ym

yk

wjik
wkjk

In the case of this work, the activation function that
produced the most accurate results was the sigmoid
function, shown in (5).

()k
k a

y
−+

=
exp1

1 (5)

The error at the output of the neural network is
given as:

() () ()ktkyke jji −= (6)
Where tj is the desired output, yj is the neuron
output, and k is the kth output. Within the neural
network several methods of optimisation were used
to minimise errors in the weights. The optimisation
methods tested within the neural networks included
gradient methods such as conjugate gradient (CG),
scaled conjugate gradient (SCG), quasi-Newton
(QN), batch gradient descent (GD). Each stage of
the optimisation introduces some error as
highlighted in Dhlamini and Marwala [15]. The
sum of the squared output error is used to prevent
the error from being a negative number, i.e. when
target is greater than NN output. The sum squared
error is given by:

() ()�
=

=
n

j

j kek

1

2
2
1ε (7)

Where n is the number of neurons in the output
layer. The average squared error is calculated by
summing the squared error (εi) of all the outputs
and dividing by the size of the output set (N),
giving an average error (εav).

 ()�
=

=
n

j

av k
N

1

1 εε (8)

Two popular methods of evaluating the error
function in the neural network are the maximum
likelihood approach and Bayesian training [16]. If

Fig. 1

Proc. of the 5th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18, 2005 (pp430-435)

there is missing data, then the error function
becomes (em).

2

,,
�
�

	

�
�

�

�
�

	

�
�

�

�
�
�

�
�
�

�
�
�

�
�
�

−
�
�
�

�
�
�

= b
w

w

x

x
f

x

x
e

m

k

m

k

m

k
m (9)

Where the subscript m stands for missing, and k
stands for known. Two evolutionary algorithms
were used to optimise the error function and these
are particle swarm optimisation and genetic
algorithms (GA). Because GA seeks to maximise
the error function a negative was inserted in the
error equation to obtain a minimum value. So the
GA error function is given in (10).

2

,,
�
�

	

�
�

�

�
�

	

�
�

�

�
�
�

�
�
�

�
�
�

�
�
�

−
�
�
�

�
�
�

−= b
w

w

x

x
f

x

x
e

m

k

m

k

m

k
m (10)

The process diagram of the evolutionary neural
network is as shown in Fig. 2. Approximating
missing data using iterative optimisation
techniques such as PSO and GA is an expectation
maximisation (EM) type of approach. Because first
step, called the expectation (E) step computes the
expected value of the missing variable. And the
second step, called the maximization (M) step,
substitutes the expected values for the missing data
obtained from the E step and then maximizes the
likelihood function as if no data were missing to
obtain new parameter estimates. The cycle of
expectation and maximisation is repeated until the
error is within the tolerance or until the number of
cycles has been exceeded.

In this work the autoencoder had 10 inputs
and outputs with 7 hidden neurons. The number of
neurons in the hidden layer of the classifying MLP
was optimised to 31, with 10 inputs and 1 output.

5 Genetic Algorithms
Genetic algorithms (GA) search the solution space
of a function by simulating the survival of the
fittest strategy similar to evolution. The fittest
individuals of a population reproduce and survive
to the next generation. In attempting to simulate
evolution GA uses components and stages which
include chromosomes, selection functions, genetic
functions, reproduction functions, a random initial
population, terminating criteria, and an evaluation
function [17]. The five stages in a GA optimisation
cycle are to create a random initial state, evaluate
fitness, select the fittest population, undergo
crossover, undergo mutation and repeat until
successful. Selection methods include roulette
wheel and its variations, scaling techniques,
tournament, elitist, and ranking methods. For this
work 25 generations and a population size of 20
was used. The roulette wheel was the selection
method, arithmetic crossover was used, non-
uniform mutation was used. Table 1 compares the
results of the simulations done using PSO and GA.

6 Particle Swarm Optimisation
Particle swarm optimisation (PSO) takes its origins
form the social behaviour of bird flocking. PSO is
a random search technique used global
optimisation method. There are many similarities
between GA and PSO, yet unlike GA, PSO has no
evolution operators such as crossover and
mutation. In PSO, the potential solutions, called
particles, fly through the problem space by
following the current optimum particle. Each
particle is defined by two variables, a velocity and
position, as shown in (11) and (12) respectively.

[] [] () [] []()
() [] []()presentgbestrandc

presentpbestrandcvv

−⋅⋅
+−⋅⋅+=

2

1 (11)

[] [] []vpresentpresent += (12)
Where v[] is the particle velocity, present[] is the
current particle or current solution, pbest[] is the
best solution or fitness achieved so far, gbest[] is
the best value in the global set of particles, rand ()
is a random number between (0,1) as well as c1
and c2 which are learning factors as defined by Shi
and Eberhart [18].

Each particle keeps track of its coordinates in
the problem space which are associated with the
best solution or fitness it has achieved so far. The
fitness value is also stored as pbest. The best value,
obtained so far by any particle in the
neighbourhood of the particle is also tracked. This
location is called lbest. When a particle takes all
the population as its topological neighbours, the

Yes

No

Output

Evolutionary Algorithm
(GA or PSO) to optimize

Error function and
No. hidden neurons

and No. cycles

Is error
Minimum

STOP ENN Classify bushing
(NN)

Input Xk

GA or PSO
To estimate
missing data

Xm

Autoencoder
(using SCG)

Fig. 2. Missing data classification flow chart

Proc. of the 5th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18, 2005 (pp430-435)

best value is a global best and is called gbest. At
each time step, the velocity changes, thus
accelerating each particle toward its pbest and lbest
locations. Acceleration is weighted by a random
term, with separate random numbers being
generated for acceleration toward pbest and lbest
locations. Clearly the randomisation of the position
of the particles is at the start of the PSO
optimisation, i.e. only the first set of particle values
are truly random. Subsequent particles all move
towards the best particle, pbest located at lbest. If
the initial pbest is at a local minimum lbest then
the entire swarm will search and converge within
that local minimum. This is in contrast with GA
where the entire search process is random. The
starting positions of the chromosomes is random,
the mutation of each chromosome is random and
further randomised by crossover of mutated
chromosomes. When the fittest chromosome is
selected, mutated, and reproduced then the search
surface is less likely to be a local minimum,
because the offspring can end up in a completely
unexplored surface, or search the same surface
more than once. By remembering the best result
over the total number of generations, the GA is
able to obtain a global optimum. GA performs a
more exhaustive search for an optimum than PSO.

The PSO simulation used a swarm size of 20,
with 50 iterations to produce an accuracy of 95%
with one missing data point. Table 3 shows more
results.

What is common in the implementation of
evolutionary techniques like PSO and GA are the
following procedures: (1) random generation of an
initial population; (2) calculating a fitness value for
each subject which is directly dependant on the
distance to the optimum; and (3) reproduction of
the population based on fitness values.

7 Results
Using evolutionary algorithms together with neural
networks the work was able to minimise the error
function and number of hidden neurons as well as
the number of cycles in the iteration. The missing
data approximation simulations were done with
500 bushings each with 10 variables. The criterion
for a correct approximation of missing value is that
it should lie within the standard deviation for each
variable, e.g. CH2, and be positive. Standard
deviations calculated gave values ranging from
0.96 to 7226.

If the standard deviation is small, the
approximated value is closer to the actual missing
value. Large standard deviations result in

approximated values which are further from the
target value even if the approximation is within the
standard deviation. Based on the approximated
missing variables, 60966 bushings were then
evaluated according to IEEEc57.104 and IEC599
criteria, and classified as acceptable or unusable.
Table 1 shows the average values of three
simulations of the accuracy of approximated values
that were calculated using PSO and GA.

Table 1. Accuracy of Predictions for Missing
 Variables using PSO and GA

1 2 3 4
Accuracy 95% 84% 76% 54%
Time (s) 4608 4799.5 5006.2 4999
Accuracy 95% 66% 68% 51%
Time (s) 1050.1 1057 1071.25 1060

Number of Missing Data Points

PSO

GA

The difference in the results is due to using fewer
particles in the PSO swarm. PSO was found to be 4
times faster than GA to achieve the same level of
accuracy for one missing data point. But it can be
argued in that it depends on number of iteration
and swarm size. By setting both at very high
values, e.g. swarm size of 100 and iterations of
500, the average accuracy of the results can be
improved by 1%.
To approximate a missing value the known data
and the guessed unknown/missing value was put
into a trained autoencoder. The average error
between the input and output values of the known
values was calculated ignoring the approximated
missing variable. If the error in the known
variables was greater than 1x10-3, then the
approximated missing value was recalculated by
the GA or PSO. The process continued until the
number of iterations of the swarm or generations
for the GA was exceeded or until the error became
less than 1x10-3. The results obtained shows that an
autoencoder can reliably trace correlation between
the missing data and known data. The results
further show that where 50% of data was not
available, the network could only approximate
30% of the missing variables to within the standard
deviation.

If PSO and GA performance is compared based on
time alone, then PSO is better than GA If accuracy
is the criteria for evaluation, and time is not limited
then both methods perform the same, because the
number of iteration or generations as well as the
swarm size or population size can be increased to
achieve the desired accuracy. PSO has few
parameters to adjust during the optimisation.

Proc. of the 5th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18, 2005 (pp430-435)

8 Conclusions
The work finds that an autoencoder can trace
correlation between the missing data and known
data if 10% of the data is missing both PSO and
GA could produce an average accuracy of 95%.
Approximation where 100% of missing data was
within the standard deviation was also achieved
when 10% of the data was missing. If the
percentage of missing data is less than 30% of total
number variables, the autoencoder approximated
the missing data with an average accuracy of 68%
for PSO and 76% for GA. PSO was found to be 4
times faster than GA to achieve the same level of
accuracy for one missing data point. But it can be
argued in that it depends on number of iteration
and swarm size. By setting both at very high
values, e.g. swarm size of 100 and iterations of
500, the accuracy of the results can improve by 1%
but the time to simulate will increased by 400%.
GA is performs a more exhaustive search for an
optimum than PSO.

References:
[1] A.J. Mcgrail, E. Gulski, E.R.S. Groot, D.

Allan, D. Birtwhistle, T.R. Blackburn, Data
Mining Techniques to Assess the Condition of
High Voltage Electrical Plant, Proceedings of
Cigre Conference, Paris, 2002.

[2] D. L. Hall and J. Llinas, editors, Handbook of
Multisensor Data Fusion, CRC Press, 2001.

[3] J.E. Jackson, A users guide to Principal
Components, John Wiley and Sons, New
York, 1991.

[4] W.G. Madow, I. Olkin, D.B. Rubin,
Incomplete Data in Sample Surveys II: Theory
and Bibliographies, Academic Press Inc.,
New York, 1983.

[5] M. Abdella, T. Marwala, The use of genetic
algorithms and neural networks to
approximate missing data in database,
Proceedings of the IEEE 3rd International
Conference on Computational Cybernetics,
2005, Mauritius, pp. 207-212.

[6] M.K. Markey, A Patel, Impact of Missing
Data in Training Artificial Neural Networks
for Computer-Aided Diagnosis, 2004,
website, [www.bme.utexas.edu/research/
informatics/pubs/Markey2004_Impact.pdf]

[7] Z. Ghahramani, M.I. Jordan, Mixture models
for Learning from incomplete data, Chapter in
R. Greiner, T. Petsche, S.J. Hanson,
Computational Learning Theory and Natural

Learning Systems, Volume IV: Making
Learning Systems Practical, Cambridge, MA:
MIT Press, 1997, pp. 67-85.

[8] V. Tresp, S. Ahmad, R. Neuneier, Training
neural networks with deficient data, Chapter
in J.D. Cowan, G. Tesauro, J.Alspector,
Advances in Neural Information Processing
Systems 6, San Mateo, CA: Morgan Kaufman,
1994 ,pp. 128-135.

[9] R.J.A. Little, D.B. Rubin, Statistical analysis
with missing data, New York, Wiley, 1987.

[10] B.S. Everitt, G. Dunn, Applied Multivariate
Data Analysis, Edward Arnold, London, 1991.

[11] M. Welling, M. Weber, Independent
Component Analysis of Incomplete Data,
Proceedings of the 6th joint Symposium on
Neural Computation, UCSD, May 22 1999.

[12] B.B. Thompson, R.J. Marks, M.A. El-
Sharkawi, On the contractive nature of
autoencoders: Application to sensor
restoration, Proceedings of the IEEE Joint
Conference on Neural Networks, July 2003
Portland.

[13] B.B. Thompson, R.J. Marks, M.A. El-
Sharkawi, M.Y. Huang, C. Bunje, Implicit
learning in autoencoder novelty assessment,
Proceedings of International Joint Conference
on Neural Networks, and IEEE World
Congress on Computational Intelligence,
2002, Honolulu, pp. 2878-2883.

[14] C.N. Bishop, Neural Networks for Pattern
Recognition. Oxford University, 1995.

[15] S.M. Dhlamini, T. Marwala, Modeling
inaccuracies from simulators for HV polymer
Bushing, Proceedings of International
Symposium on High Voltage, 2005, Beijing.

[16] B.C.Vilakazi, P.R. Mautla, E.M. Moloto, T.
Marwala, Bushing condition monitoring using
standalone classifiers and committee
classifiers, Proceedings of Pattern
Recognition Association of South Africa
(PRASA), Cape Town, 2005.

[17] C.R. Houck, J.A. Joines, M.G. Kay, A genetic
algorithm for function optimisation: A Matlab
implementation, Technical Report NCSU-IE
Technical Report 95-09, North Carolina State
University, 1995.

[18] Y. Shi, R.C. Eberhart, Parameter Selection in
Swarm Optimisation, Evolutionary
Programing VII: Proc. EP98, Springer-Verlag,
New York, 1998, pp 591-600.

Proc. of the 5th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18, 2005 (pp430-435)

