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Abstract: - The work proposes the application of neural networks with particle swarm optimisation (PSO) and 
genetic algorithms (GA) to compensate for missing data in classifying high voltage bushings. The 
classification is done using DGA data from 60966 bushings based on IEEEc57.104, IEC599 and IEEE 
production rates methods for oil impregnated paper (OIP) bushings. PSO and GA were compared in terms of 
accuracy and computational efficiency. Both GA and PSO simulations were able to estimate missing data 
values to an average 95% accuracy when only one variable was missing. However PSO rapidly deteriorated to 
66% accuracy with two variables missing simultaneously, compared to 84% for GA.  
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1   Introduction 
This work investigates tools that compensate for 
sensor failure in systems that are used for condition 
monitoring of high voltage bushings. Sensor failure 
is a concern that needs to be taken into account 
when designing an automated system of bushing 
condition monitoring. If a sensor fails on an online 
bushing monitoring system and the system trips a 
transformer, the financial and legal consequences 
can be serious. A failed sensor may take a few 
hours or months to repair so one will need to 
answer the following questions before 
implementing an online diagnostics system. What 
happens if one or more of the sensors fail? How 
many sensors can fail before the online system is 
rendered ineffective?  

Recognising the value of artificial intelligence 
and the risks associated with its usage, Cigre 
formed Study Committee 15 WG 11 in 2002 with 
the task of standardising and improving 
applications of data mining techniques within 
power systems [1]. McGrail, et al. [1] identified 
several areas in reliability centred maintenance that 
can be improved by using artificial intelligence 
online and offline. Artificial intelligence (AI) can 
add significant value in power systems operations, 
maintenance and control, by providing a single 
engine to execute the critical role of data-fusion 
[2]. However, it is also clear that AI systems need 
to be robust and reliable. 

Some of the methods used previously to 
account for missing data include regression 
techniques by Jackson [3] as well as Madow, et al. 
[4] who used principal component analysis. 
Abdella and Marwala [5] proposed a method of 
accurately compensating for missing data using an 
autoencoder. Markey and Patel [6] chose to use 
zeros where there was missing data. Other work by 
Ghahramani [7] and Tresp [8] also used regression 
to address the problem of missing data. The 
accuracy of the solution derived by replacing 
missing data with averages or zeros or an iterated 
number depends on whether the final diagnosis 
decision is based on the missing variable alone, or 
if that decision depends collectively on all the 
variables. The accuracy of the approximated 
variable will be considered in this paper. 

What is important at all stages in evaluating 
data is to note that data or measurements or 
numbers by themselves have little meaning, and 
historically human intervention is required before 
decisions can be made and executed. Artificial 
Intelligence gives the option to autonomously 
transform, correlate and interpret data, so that it 
becomes valuable knowledge. 
 
 
2   Why Missing Data is a Problem 
The first reason for concern when a sensor fails is 
that no information is available for a particular 
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measured parameter, and that missing variable 
might be important. The second reason to be 
concerned is that the processor of the online 
diagnostics tool will identify an undefined value 
where there is missing data due to sensor failure. 
The third reason for concern is that data from a 
sensor can become corrupted due to loss of 
calibration or excessive noise. The problem is that 
analytical tools such as neural network, fuzzy set 
theory, principal component analysis, etc., cannot 
process undefined values. Currently there is no 
method for specifying missing data within a neural 
network or fuzzy or toolbox, so missing data must 
be approximated prior to processing. For 
multivariate data, five methods are available to 
address missing data, namely: (1) average values 
of previous values of that variable; (2) average 
values of the training set data for that variable; (3) 
using zero where there is missing data; (4) deleting 
the variables that are undefined; and (5) finding a 
correlation between the missing variable and the 
remaining variables. Using a constant, such as 
averages or zeros or deleting the variable 
completely, provides incorrect solutions, so these 
options cannot be applied as a generic solution to 
missing data problems. Iterative methods that 
reduce dimensionality of data can be used to look 
for correlation between the measured data. This 
work approximates data which missing at random 
(MAR), missing completely at random (MCAR) 
and non-ignorable data as described in Little and 
Rubin [9]. 
 
 
3   Techniques to Compensate for  
     Missing Data  
There are many methods of data fusion for 
extracting features among variables of highly 
dimensional data, among these are dimension 
reduction techniques such as Principal Component 
Analysis (PCA),  Fisher Linear Discriminant 
(FLD), Multi-dimensional Scaling (MDS), 
Independent Component Analysis (ICA), Factor 
Analysis (FA), and Auto associative neural 
network encoder (autoencoder). 

All the above methods except autoencoders 
are dimension-reduction techniques, in the sense 
that they can be used to replace a large set of 
observed variables with a smaller set of new 
variables, whilst preserving all of the original 
information. PCA takes advantage of redundancy 
of information and simplifies data by replacing a 
group of variables with a fewer new variables, 
called principal components. Each principal 

component is a linear combination of the original 
variables. All the principal components are 
orthogonal to each other so there is no redundant 
information. Everitt and Dunn [10] found that FA 
works well for finding correlations among data, in 
contrast to PCA which only summarises data using 
fewer dimensions. MDS is used to detect 
underlying dimensions that allows one to explain 
observed similarities or dissimilarities between the 
investigated objects. MDS is comparable with FA, 
the only difference being that FA tends to extract 
more factors than MDS, forcing the user to 
manually interpret the results; as a result, MDS 
often yields more useful solutions. Welling and 
Webber [11] established that ICA searches for 
directions in data-space, which are independent 
across all statistical orders. ICA is related to 
principal component analysis and factor analysis, 
yet ICA is a much more powerful technique, 
because ICA is capable of finding the underlying 
factors or sources when the classic methods such 
as PCA and FA fail completely. Although PCA 
finds the minimum number of components that 
best represents the data, this best representation is 
in the least square sense and it does not guarantee 
any usefulness for discrimination. One needs to 
reduce the dimensionality, under some constraint 
of maximizing the class discrimination. 
Maximizing the discrimination can be achieved by 
increasing the inter-cluster distances and reducing 
the intra-cluster distances.  

These distances are obtained using between 
and within class scatter matrices through the FLD 
method. FLD is referred to as multiple 
discriminant analysis (MDA) when the number of 
classes of data exceeds two. 

Dimension reduction of original complete data 
can be used to generate a smaller data set, which 
can then be enlarged into an approximation of the 
original data set using a prediction neural network 
(NN). If there is missing data in the large data set, 
one can ignore the missing variable and use a 
dimension reduction technique with the available 
variables and then run the output of the PCA or 
FLD, etc., through a neural network to regenerate 
the original complete data set with the 
approximated variable. The above approximation 
process has many steps where errors can be 
introduced. For this reason this paper will evaluate 
the autoencoders only. 
 
 
4   Autoencoder 
Autoencoders use the principle of contractive 
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mapping to locate a point of convergence given a 
set of known sensors’ data and some unknown 
sensor data. Contractive mapping occurs when the 
output distance between two points is less than the 
input distance between the same points. 
Mathematically it is a mapping O: X→X on a 
complete metric space (X, d) in which, for any x 
and y in that space [12]: 
 ( ) ( )yxdkOyOxd ,, ⋅≤   (1) 
where 10 ≤≤ k  

Autoencoders are an application of the 
Banach Fixed-Point Theorem, which states that, if f 
is a contractive mapping, then there exists a unique 
fixed point x0 for which f(x0) = x0. Moreover, there 
exists a sequence {xn}, for which any element xn+1 
= f(xn), converges, and that convergent point is xo.. 
Fig. 1 shows the structure of an autoencoder. 
Thompson, et al, [12] successfully applied an 
autoncoders to restore missing sensors by 
minimising the error between the missing sensor 
inputs and outputs and also minimising the error 
between the entire input pattern and output pattern 
using both missing and known sensors to achieve a 
final answer. 

The input to the network is two vectors whose 
total dimension is n. By definition the input 
dimension and the output dimension are the same 
in an autoencoder, while the hidden layer has a 
lower dimensionality than the input/output. As a 
rule the ratio of input to hidden layer neurons is 
2:1, as in [13]. The input into the neural network is 
given by x. The first vector, xk, is the set of known 
sensor values for a given input pattern. The second 
vector is xm, the set of missing sensor values. The 
autoencoder that is used in this paper is a feed-
forward multilayered perceptron (MLP). The 
parameter wijk is the matrix of weights whose (i, j)th 
element is the weight connecting the ith known 
sensor value to the jth neuron in the hidden layer; 
wijm is the matrix for the missing sensors, b1 is the 
vector of bias weights for the first layer; wkjk and 
wkjm are the weights on the output. Within the input 
layer the input is transformed from x into a using 
the weights (wji*) and baises (bj) [14]. 
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Within the hidden layer the input is further 
transformed using an activation function, such as:  
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The variable c is a constant term. In the output 
layer the input is further transformed into a 
variable which can be optimised using weights. 
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At the output stage the variable is passed 
through another activation function. 

 

Fig.2.  Autoencoder architecture  
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In the case of this work, the activation function that 
produced the most accurate results was the sigmoid 
function, shown in (5). 
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The error at the output of the neural network is 
given as: 

( ) ( ) ( )ktkyke jji −=                             (6) 
Where tj is the desired output, yj is the neuron 
output, and k is the kth output. Within the neural 
network several methods of optimisation were used 
to minimise errors in the weights. The optimisation 
methods tested within the neural networks included 
gradient methods such as conjugate gradient (CG), 
scaled conjugate gradient (SCG), quasi-Newton 
(QN), batch gradient descent (GD). Each stage of 
the optimisation introduces some error as 
highlighted in Dhlamini and Marwala [15]. The 
sum of the squared output error is used to prevent 
the error from being a negative number, i.e. when 
target is greater than NN output. The sum squared 
error is given by: 
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Where n is the number of neurons in the output 
layer. The average squared error is calculated by 
summing the squared error (εi) of all the outputs 
and dividing by the size of the output set (N), 
giving an average error (εav). 
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Two popular methods of evaluating the error 
function in the neural network are the maximum 
likelihood approach and Bayesian training [16]. If 

Fig. 1 
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there is missing data, then the error function 
becomes (em).  
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Where the subscript m stands for missing, and k 
stands for known. Two evolutionary algorithms 
were used to optimise the error function and these 
are particle swarm optimisation and genetic 
algorithms (GA). Because GA seeks to maximise 
the error function a negative was inserted in the 
error equation to obtain a minimum value. So the 
GA error function is given in (10). 
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The process diagram of the evolutionary neural 
network is as shown in Fig. 2. Approximating 
missing data using iterative optimisation 
techniques such as PSO and GA is an expectation 
maximisation (EM) type of approach. Because first 
step, called the expectation (E) step computes the 
expected value of the missing variable. And the 
second step, called the maximization (M) step, 
substitutes the expected values for the missing data 
obtained from the E step and then maximizes the 
likelihood function as if no data were missing to 
obtain new parameter estimates. The cycle of 
expectation and maximisation is repeated until the 
error is within the tolerance or until the number of 
cycles has been exceeded. 

In this work the autoencoder had 10 inputs 
and outputs with 7 hidden neurons. The number of 
neurons in the hidden layer of the classifying MLP 
was optimised to 31, with 10 inputs and 1 output. 

 

 
 
 

5   Genetic Algorithms 
Genetic algorithms (GA) search the solution space 
of a function by simulating the survival of the 
fittest strategy similar to evolution. The fittest 
individuals of a population reproduce and survive 
to the next generation. In attempting to simulate 
evolution GA uses components and stages which 
include chromosomes, selection functions, genetic 
functions, reproduction functions, a random initial 
population, terminating criteria, and an evaluation 
function [17]. The five stages in a GA optimisation 
cycle are to create a random initial state, evaluate 
fitness, select the fittest population, undergo 
crossover, undergo mutation and repeat until 
successful. Selection methods include roulette 
wheel and its variations, scaling techniques, 
tournament, elitist, and ranking methods. For this 
work 25 generations and a population size of 20 
was used. The roulette wheel was the selection 
method, arithmetic crossover was used, non-
uniform mutation was used. Table 1 compares the 
results of the simulations done using PSO and GA. 
 
 

6   Particle Swarm Optimisation 
Particle swarm optimisation (PSO) takes its origins 
form the social behaviour of bird flocking. PSO is 
a random search technique used global 
optimisation method. There are many similarities 
between GA and PSO, yet unlike GA, PSO has no 
evolution operators such as crossover and 
mutation. In PSO, the potential solutions, called 
particles, fly through the problem space by 
following the current optimum particle. Each 
particle is defined by two variables, a velocity and 
position, as shown in (11) and (12) respectively. 

[ ] [ ] ( ) [ ] [ ]( )
( ) [ ] [ ]( )presentgbestrandc

presentpbestrandcvv

−⋅⋅
+−⋅⋅+=

2

1            (11) 

[ ] [ ] [ ]vpresentpresent +=               (12) 
Where v[] is the particle velocity, present[] is the 
current particle or current solution, pbest[] is the 
best solution or fitness achieved so far, gbest[] is 
the best value in the global set of particles, rand () 
is a random number between (0,1) as well as c1 
and c2 which are learning factors as defined by Shi 
and Eberhart [18].  

Each particle keeps track of its coordinates in 
the problem space which are associated with the 
best solution or fitness it has achieved so far. The 
fitness value is also stored as pbest. The best value, 
obtained so far by any particle in the 
neighbourhood of the particle is also tracked. This 
location is called lbest. When a particle takes all 
the population as its topological neighbours, the 
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best value is a global best and is called gbest. At 
each time step, the velocity changes, thus 
accelerating each particle toward its pbest and lbest 
locations. Acceleration is weighted by a random 
term, with separate random numbers being 
generated for acceleration toward pbest and lbest 
locations. Clearly the randomisation of the position 
of the particles is at the start of the PSO 
optimisation, i.e. only the first set of particle values 
are truly random. Subsequent particles all move 
towards the best particle, pbest located at lbest. If 
the initial pbest is at a local minimum lbest then 
the entire swarm will search and converge within 
that local minimum. This is in contrast with GA 
where the entire search process is random. The 
starting positions of the chromosomes is random, 
the mutation of each chromosome is random and 
further randomised by crossover of mutated 
chromosomes. When the fittest chromosome is 
selected, mutated, and reproduced then the search 
surface is less likely to be a local minimum, 
because the offspring can end up in a completely 
unexplored surface, or search the same surface 
more than once. By remembering the best result 
over the total number of generations, the GA is 
able to obtain a global optimum. GA performs a 
more exhaustive search for an optimum than PSO. 

The PSO simulation used a swarm size of 20, 
with 50 iterations to produce an accuracy of 95% 
with one missing data point. Table 3 shows more 
results. 

What is common in the implementation of 
evolutionary techniques like PSO and GA are the 
following procedures: (1) random generation of an 
initial population; (2) calculating a fitness value for 
each subject which is directly dependant on the 
distance to the optimum; and (3) reproduction of 
the population based on fitness values.  
 
 

7   Results 
Using evolutionary algorithms together with neural 
networks the work was able to minimise the error 
function and number of hidden neurons as well as 
the number of cycles in the iteration. The missing 
data approximation simulations were done with 
500 bushings each with 10 variables. The criterion 
for a correct approximation of missing value is that 
it should lie within the standard deviation for each 
variable, e.g. CH2, and be positive. Standard 
deviations calculated gave values ranging from 
0.96 to 7226. 

If the standard deviation is small, the 
approximated value is closer to the actual missing 
value. Large standard deviations result in 

approximated values which are further from the 
target value even if the approximation is within the 
standard deviation. Based on the approximated 
missing variables, 60966 bushings were then 
evaluated according to IEEEc57.104 and IEC599 
criteria, and classified as acceptable or unusable. 
Table 1 shows the average values of three 
simulations of the accuracy of approximated values 
that were calculated using PSO and GA. 
 
Table 1. Accuracy of Predictions for Missing     
               Variables using PSO and GA 
 

1 2 3 4
Accuracy 95% 84% 76% 54%
Time (s) 4608 4799.5 5006.2 4999
Accuracy 95% 66% 68% 51%
Time (s) 1050.1 1057 1071.25 1060

Number of Missing Data Points

PSO

GA

 
 
The difference in the results is due to using fewer 
particles in the PSO swarm. PSO was found to be 4 
times faster than GA to achieve the same level of 
accuracy for one missing data point. But it can be 
argued in that it depends on number of iteration 
and swarm size. By setting both at very high 
values, e.g. swarm size of 100 and iterations of 
500, the average accuracy of the results can be 
improved by 1%. 
To approximate a missing value the known data 
and the guessed unknown/missing value was put 
into a trained autoencoder. The average error 
between the input and output values of the known 
values was calculated ignoring the approximated 
missing variable. If the error in the known 
variables was greater than 1x10-3, then the 
approximated missing value was recalculated by 
the GA or PSO. The process continued until the 
number of iterations of the swarm or generations 
for the GA was exceeded or until the error became 
less than 1x10-3. The results obtained shows that an 
autoencoder can reliably trace correlation between 
the missing data and known data. The results 
further show that where 50% of data was not 
available, the network could only approximate 
30% of the missing variables to within the standard 
deviation.  
 
If PSO and GA performance is compared based on 
time alone, then PSO is better than GA If accuracy 
is the criteria for evaluation, and time is not limited 
then both methods perform the same, because the 
number of iteration or generations as well as the 
swarm size or population size can be increased to 
achieve the desired accuracy. PSO has few 
parameters to adjust during the optimisation. 
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8 Conclusions 
The work finds that an autoencoder can trace 
correlation between the missing data and known 
data if 10% of the data is missing both PSO and 
GA could produce an average accuracy of 95%. 
Approximation where 100% of missing data was 
within the standard deviation was also achieved 
when 10% of the data was missing. If the 
percentage of missing data is less than 30% of total 
number variables, the autoencoder approximated 
the missing data with an average accuracy of 68% 
for PSO and 76% for GA. PSO was found to be 4 
times faster than GA to achieve the same level of 
accuracy for one missing data point. But it can be 
argued in that it depends on number of iteration 
and swarm size. By setting both at very high 
values, e.g. swarm size of 100 and iterations of 
500, the accuracy of the results can improve by 1% 
but the time to simulate  will increased by 400%. 
GA is performs a more exhaustive search for an 
optimum than PSO. 
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