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Abstract: Recently there has been increasing interest in the development of efficient control strategies to 

improve dynamic behaviour of power inverters. These systems mainly include power supply associated with 

inverters and electric motors. In this paper, a method for controlling induction motor drive is presented. It is 

based on the use of a well known artificial neural network, the multilayer perceptron (MLP) net. This neural net 

is utilized to generate clean and appropriate PWM controlling signals and to eliminate unwanted harmonics as 

well. The MLP net is trained to learn system variations; the backpropagation algorithm is applied as an update 

for adjusting the net weights. To show the effectiveness of our scheme, the proposed method was simulated on 

an electrical system composed of a synchronous motor and its power inverter. Simulation results concerning the 

speed control of such a system are also given  
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1 Introduction  
Recently there has been increasing interest in the 

development of efficient control strategies to 

improve dynamic behaviour of power inverters. The 

behaviour of such systems is controlled by the 

switching ON and OFF of components such as 

thyristors or transistors. Among classical controllers 

which have been widely used there is the well-

known P.W.M (Pulse Width Modulation) approach. 

This technique consists of controlling the process, 

using mean input values [1, 2, 3]. The regulation is 

often achieved by a P.I.D controller.   

     Present development trends in PWM inverters are 

primary concerned with the design of real time 

microprocessor-based PWM wave form generators. 

However, instead of the natural PWM described 

above, a modified PWM technique known as regular 

sampled, PWM is used [9]. 

    Artificial Neural Networks have been proved 

extremely useful in pattern recognition [7, 8] and 

control systems [8, 9]. In this paper we propose an 

optimized multi-layer neural network for the 

generation of PWM waveforms, and then we show 

how it is able to control the state of a switching 

circuit and to provide the control output which 

ensures that the trajectory is followed in the state 

space.  

     This method utilizes the neural network paradigm 

as a mean to generate appropriate control signals to 

be applied on the system. 

     

The proposed method has been simulated on a 

synchronous motor and its power inverter in order to 

show its effectiveness in speed control. Simulation 

results show a good response of the inverter circuit 

and confirm the validity of the neural approach.  

 

2 Structure of the Artificial Neural 

Network  
Artificial Neural Networks can be defined as highly 

connected arrays of neurons [8]. The internal 

structure of a neuron is shown in Fig 1.  

 

 
 

Fig. 1: Neurone Model. 
 

       The internal activity of a single neuron computes 

the weighted sum of the inputs ei = (net)and passes 

this sum through a non-linear function,  f according  
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       Another term called the bias term wb is 

associated with this sum. The function used as a 

non-linear function is, for example, a sigmoid 

function given by:  
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      A layer is a set of elementary neurons. The 

neural networks used here are basically layers of 

neurons connected in cascade, with one input layer, 

one or more hidden layers and one output layer. The 

input layer is the sensory organ for the Artificial 

Neural Networks. Each neuron in a layer is 

connected to neurons of adjacent following layer 

with different weights. Each neuron, except for the 

neurons of the input layer, receives signals from the 

neurons of the previous layer, weighted by the 

interconnect values between neurons. Consequently 

the output layer produces an output signal. The 

calculation of weights is performed with the well 

known learning algorithm, the backpropagation 

update rule  which is presented in the next Section.  

 

Fig 2: Scheme of an Artificial Neural Network. 
 

       The dimension of the input layer corresponds to 

the number of state variables to be manipulated. The 

output layer size is defined by the number of 

outputs. The choice of the number of hidden layer 

nodes is a compromise between efficiency and 

accuracy. The basic structure of a three-layer 

Artificial Neural Network capable to satisfactorily 

perform the control action is shown in Fig 2.  

 

 

 

      The propagation of the data is performed as 

follows. For the neuron of the output layer, the value 

yi has the following shape:  
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 Where:  

ek: kth input of the network.  
vjk: the interconnection weights between the input and 

hidden layers. 

vb,j: the jth bias weight of the hidden layer.  

wij: the weights between the hidden and output layers.  

wb,i : the ith bias weight of the output layer.  

     Clearly, the matrix form of the net output is  
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 Where netz is the weighted sum of the z th neuron, 

and  
 

[ ]TmnetnetnetNET Λ21=  
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 ,  [ ]ijwW =  , [ ]jkvV =  , 

[ ]bjb wW =  ,and [ ]bjb vV =    

 

2.1 Training Algorithm  
The training problem consists of how to online 

adjust the weights using a set S of data. The learning 

strategy is based on the backpropagation algorithm 

[8]. The principle is to minimize for every input-

output pair denoted  

(e, y
d
) of the set S, the quadratic criterion J defined 

as :  
 

    nn

T

nnJ εε
2

1
=    

      where the error nnε  vector is given by the 

difference between the desired output y
d
 and the 

neural network output y obtained for the input e .  
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      The algorithm used to minimize this criterion is 

based on the well-known gradient descent method, 

which gives for a weight w the following adaptation 

law:  

   
w

J
w
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      Withη  the learning gain which influences the 

weights convergence speed.  

      Applying this algorithm to the network weights, 

we obtain the gradient vectors denoted δW and δV : 
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 the derivative of   F(NET) 

Where   f'(netz) is the derivative of f with respect to  

netz :  
 

 

 

 

 

∗ Denote the HADAMARD product. Thus, the 

adaptation laws are:  
 

 

 

 

 

 

 

 

  

      The learning gain for the bias weights is ηb with 

ηb <η, so that their variations are not too large with 
respect to the weight variations of W and V.  
 

3 Application to a Synchronous Motor  
3.1 Presentation  
The system used to obtain the simulation results is 

composed of a permanent magnet synchronous 

machine fed through a PWM inverter. In this 

approach of the problem of motor control, a 

mathematical model of the system is required to 

simulate its behaviour. By taking the statoric  

 

 

currents, the angle and the velocity as state variables 

the mathematical model of the system is given by:  

 
 

 

 

 

 

 

 

 

 

 

 

Where all quantities are expressed with respect to the 

rotor reference frame):  

• Lq, Ld: q and d axis inductances  

• R: resistance of the stator windings  

• iq, id: q and d axis currents  

• vq, vd: q and d axis voltages  

• ωr: angular velocity of the rotor  

• λ: amplitude of the flux induced by the 

permanent magnets of the rotor in the stator 

phases  

• p: number of pole pairs  

• Te: electromagnetic torque Mechanical 

System  

 

 

 

 

 

 

 

 

Where:  

• J: Combined inertia of rotor and load  

• F: Combined viscous friction of rotor and 

load  

• θ: Rotor angular position  
• Tm: Shaft mechanical torque  

 

 

 

 

 

 

 

 

 

 

 

     

 

 The scheme proposed for speed control is shown in 

Fig. 3. The motor speed regulation is simply  

 

(9) 

(6) 

(8) 

(5) 

(7) 

Fig. 3 Controller block diagram 
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achieved with a feedforward action combined with a 

well-known proportional-integral (PI) controller. 

The ultimate gaol of the feedforward neural network 

is to improve the dynamic control performance. This 

compensator will then make it possible that 

satisfactory performances are reached for this 

application. The gains of the PI are chosen such that 

the response is fast and with a low overshooting for 

the nominal conditions.  

     For the application concerned, the PI controller 

gives satisfactory results with the gains chosen as 

follows:  

                                                  

                          K = 50 and Ti = 2,6 

   The phase currents ia, ib, ic and the reference 

currents iar, ibr, icr, are the inputs to the neural 

network. The voltages applied to the stator va, vb, vc, 

are the outputs of the network. The control process 

is now constituted by two regulation sub-systems, 

one for the speed control, and the other for tuning 

the currents.  

 

4 Simulation Results  
The MATLAB-SIMULINK simulation software has 

been used to study the response of the electrical 

system. The equations of the complete drive have 

been resolved by the fifth Runge-Kutta order method 

for the numerical integration. The three-phase 

inverter has been simulated by considering ideal 

switches and the synchronous machine has been 

represented by the state equation (14) with the 

following parameters:  

 

        R= 2.875 Ω          φm= 0.175 Wb          p= 4 

                   Ld = 8.5 H          J= 0.8 kg.m^2 

                   Lq = 8.5 H           F= 0 N.m.s  

 

       Where:  φm is the flux induced by magnets 

 
      The structure of the neural network used is a 6-

12-6 structure (six inputs, twelve neurons in the 

hidden layer, and six neurons in the output layer). 

The sampling time of the neural network is 0.2 ms, 

which corresponds to a 5 KHz switching frequency. 

This sampling period is chosen according to the 

dynamics of the system and the frequency limitation 

of the components 
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5 Conclusions  
In this paper an artificial neural network is proposed 

for controlling nonlinear switching systems. The 

network learning is based on the backpropagation 

algorithm, which is a relatively low cost computing 

method, and so, it is easy to implement in real time. 

The obtained outcome is strongly dumped 

harmonics and then a constant speed.  

        The effectiveness of this approach is confirmed 

by simulation results obtained on a synchronous 

motor taken as an application system. The advantage 

of the neural network is to control the system 

without exact knowledge of its model. Online 

adaptation considerably improves the robustness of 

the system with respect to parametric changes. In 

conclusion, the proposed artificial neural network 

shows high performance and good control accuracy 

for switching systems. 
 

 

References  
[1]  Rahman, M. F. and Zhong, L., A Current-

forced Reversible Rectifier Fed Single-Phase 

Variable Speed Induction Motor Drive, 

Proceedings of PESC, Vol.1, 1996, pp. 114-119.  

[2] Ismail. E.H. and Erickson, R., Single-Switch 3 

PWM Low Harmonic Rectifiers, IEEE Powers 

Electronics, March 1996, pp. 338-346.  

[3] Nonaka, S. and Neba, Y., Analysis of A PWM 

GTO Current Source Inverter Fed Induction 

Motor Drive System, IEEE Transactions on 

Industry Applications, Vol. 23, No 2, 1987.  

[4] Sira-Ramirez, H., Sliding Regimes in General 

Non Linear Systems : A Relative Degree 

Approach, Int. J. Control, Vol. 50, No. 4, 1989, 

pp.1487-1506.  

[5] Slotine, J. E., Sliding Controller for Non-linear 

Systems, Int. J. Control, Vol. 40, No. 2, 1984, 

pp. 421-434.  

[6] Sabanovic, A. and Izosimov, D. B., Application 

of Sliding Modes to Induction Motor Control, 

IEEE Transactions on Industry Applications, 

Vol. 17, No. 1, 1981, pp. 41-49.  

[7] Johnson, G. E., Mimic Nets, IEEE Transactions 

on Neural Networks, Vol. 4, No. 5, September 

1993, pp. 803-815.  

[8] Patterson, D. W., Artificial Neural Networks, 

Prentice Hall, Singapore, 1996.  

[9] Narendra, K. S. and. Parthasarathy, K., 

Identification and Control of Dynamical 

Systems Using Neural Networks, IEEE 

Transactions on Neural Networks, Vol. 1, No. 1, 

1990.  

[10] ABADIE, V. and DAUPHIN-TANGUY, G., 

Opened Loop control of switching linear 

system, JOURNAL OF THE FRANKLIN 

INSTITUTE, Vol. 330, No. 5, 1993,pp. 799-813.  

Proc. of the 5th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18, 2005 (pp80-85)



[11] Holderbaum, W., Dauphin-Tanguy, G . and 

Borne, P., Boolean Control for Linear System, 

Proceedings of International Symposium on 

Intelligent Automation and Control, ISIAC 

WAC'98 Anchorage, USA, 1998, pp. 212.1-

212.6 .  

[12] Holderbaum, W., Dauphin-Tanguy, G .and 

Borne, P., Tracking Control Problem for 

Switching Linear System, Proceedings of 

CESA'98 IMACS-IEEE/SMC Conference, 

Hammamet Tunisia, Vol. 1, 1998, pp. 935-940.  

[13] Ducreux, J. P., Castelain, A., Dauphin-Tanguy, 

G. and Rombaut, C., Power Electronics and 

Electrical Machines Modelling Using Bond-

Graph , in G. Dauphin-Tanguy and P. Breedveld 

(Eds.) IMACS Transactions on Bond-Graph for 

Engineers, Elsevier, NewYork, 1992.  

[14] Leonhard, W., Control of Electrical Drives, 

Springer, Berlin , 1985.  

Proc. of the 5th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18, 2005 (pp80-85)


