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Abstract: - In the applications of the finite element method, problems with corner-like singularities
(e.g. on the well-known L-shaped domain) are most often solved by the adaptive strategy: the
mesh near the corners is refined according to the a posteriori error estimates. In this paper we
present an alternative approach. For flow problems on domains with corner singularities we use
the a priori error estimates and asymptotic expansion of the solution to derive an algorithm for
refining the mesh near the corner. It gives very precise solution in a cheap way. We present some
numerical results.
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1 Introduction

In the paper we present the application of a pri-
ori error estimates of the finite element method
(FEM) to solve problems in computational fluid
dynamics. We generate the computational mesh
in the purpose of uniform distribution of error
on elements, and use it in order to get precise so-
lution on domains with corner-like singularities.
We apply this approach to incompressible vis-
cous flow modelled by the steady Navier-Stokes
equations.

1 This research has been supported by the
GAAV grant no. IAA2120201/02 and by the
State Research Project No. MSM 684 0770010

Usual way to improve accuracy of solution by
the FEM is the refinement of the mesh near
places, where singularity can appear. Another
way is the adaptive refinement based on a pos-
teriori error estimates or error estimators. This
method could be quite time demanding, since it
needs several runs of solution. Completely dif-
ferent method is applied in this paper. Compu-
tational mesh is prepared before the first run of
the solution.

2 Model problem

We consider two-dimensional flow of a viscous,
incompressible fluid modelled by the Navier-
Stokes equations in a domain with corner sin-
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gularity, see Fig. 1.
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Fig. 1. The geometry of the channel

Due to symmetry, we solve the problem only on
the upper half of the channel. Let us denote this
domain Ω. The steady Navier-Stokes problem
consists in finding the velocity v = (v1, v2), and
pressure p defined in Ω and satisfying

(v · ∇)v − ν∆v + ∇p = 0, (1)

∇ · v = 0 (2)

together with boundary conditions on disjoint
parts of the boundary Γin, Γwall and Γout (mean-
ing, in turn, the inlet, the wall, and the outlet
part)

v = g on Γin ∪ Γwall (3)

ν
∂v

∂n
− pn= 0 on Γout (′do nothing′) (4)

We consider kinematic viscosity ν = 0.000025
m2/s and vin max = 1 m/s, which give a maxi-
mum Reynolds number around 760.

3 Algorithm for generation of compu-
tational mesh

To derive the algorithm, two main ‘tools’ are
used. The first is a priori estimate of the FEM
error for the Navier-Stokes equations (1)-(3) (cf.
[6])

‖∇(u − uh)‖L2(Ω) + ‖p − ph‖L2(Ω) ≤

≤ C
[(

∑

K

h2k
K | u |2

Hk+1(TK)

)1/2
+ (5)

+
(

∑

K

h2k
K | p |2Hk(TK)

)1/2]

h
T

r
T

r
T
-h

T

element T

Fig. 2. Description of element variables

where hK is the diameter of triangle TK of a
triangulation T , and k = 2 for Hood-Taylor el-
ements, which are applied in our calculations.

The second tool is the asymptotic behaviour
of the solution near the singularity. In [1], it
was proved for the Stokes flow in axisymmetric
tubes, that for internal angle α = 3

2π, the lead-
ing term of expansion of the solution for each
velocity component is

ui(ρ, ϑ) = ρ0.5445ϕi(ϑ) + . . . , i = 1, 2 (6)

where ρ is the distance from the corner, ϑ the
angle and ϕi is a smooth function. The same
expansion is known to apply to the plane flow
(cf. [8]), and similar results were also proved for
the Navier-Stokes equations.

Taking into account the expansion (6), we can
estimate

| u |2Hk+1(TK)≈ C

rK
∫

rK−hK

ρ2(γ−k−1) ρ dρ =

= C
[

−r
2(γ−k)
K + (rK − hK)2(γ−k)

]

(7)

where rK is the distance of element TK from the
corner, see Fig. 2.

Putting estimate (7) into the a priori error esti-
mate (5) we derive that we should guarantee

h2k
K

[

−r
2(γ−k)
K + (rK − hK)2(γ−k)

]

≈ h2k
ref (8)

in order to get the error estimate of order
O(hk

ref ) uniformly distributed on elements.
From this expression, we compute element di-
ameters in accordance to chosen href . Let us
note that similar idea was presented by C.
Johnson for an elliptic problem in [7].
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i ri (m) hi (m)

1 0.30000 0.06956

2 0.23044 0.05621

3 0.17423 0.04483

4 0.12940 0.03522

5 0.09419 0.02720

6 0.06699 0.02059

7 0.04640 0.01524

8 0.03116 0.01098

9 0.02017 0.00767

10 0.01250 0.00515

11 0.00735 0.00330

12 0.00405 0.00199

13 0.00206 0.00112

14 0.00094 0.00057

15 0.00038 0.00038

Table 1: Resulting refinement

4 Geometry and design of the mesh

The algorithm was applied here to a computa-
tional domain in 2D which represents the chan-
nel with abruptly extended diameter (Fig. 1).
Since this is symmetric, the problem was solved
only on the upper half of the channel.

For this channel, we used href = 0.1732 m, k =
2, γ = 0.5444837 and started in the distance
r1 = 300 mm from the corner. This corresponds
to cca 3% of relative error on elements. Fifteen
diameters of elements were obtained (Table 1).

Note, that those are ‘1D’ data. An experiment
with three meshes with different refined details
(Fig. 3) was performed (cf. [4],[5], [9] for details).
Type C of refinement in Fig. 3 provided the best
uniformity of the error on elements, therefore
was chosen for further applications. This type of
refinement corresponds to the polar coordinate
system used in the derivation of the algorithm,
and is applied in the experiment described in
this paper.

The refined detail is connected to the rest of
the coarse mesh. In Fig. 4, final mesh after the
refinement is shown.

Fig. 3. Details of refined mesh - type A (up),
type B (middle), type C (down)
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Fig. 4. Final computational mesh for the channel

5 Measuring of error

To review the efficiency of the algorithm, we
use a posteriori error estimates to evaluate the
obtained error on elements. Suppose now, that
the exact solution of the problem is denoted
as (u1, u2, p) and the approximate solution ob-
tained by the FEM as (u1h, u2h, ph). The exact

3
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solution differs from the approximate solution in
the error (eu1

, eu2
, ep) = (u1 −u1h, u2 −u2h, p−

ph). For the solution (u1, u2, p) we denote

U2(u1, u2, p) =

= ‖(u1, u2)‖
2
H1(TK ) + ‖p‖2

L2(TK ) =

=

∫

TK

(

u2
1 + u2

2 +

(

∂u1

∂x1

)2

+

(

∂u1

∂x2

)2

+

+

(

∂u2

∂x1

)2

+

(

∂u2

∂x2

)2
)

dΩ +

∫

TK

p2dΩ

The following estimate of error is used (see e.g.
[2])

U2(u1 − u1h, u2 − u2h, p − ph) ≤ (9)

≤ E2(u1h, u2h, ph) (10)

where

U2(u1 − u1h, u2 − u2h, p − ph) =

= ‖(eu1
, eu2

)‖2
H1(TK) + ‖ep‖L2(TK),

E2(u1h, u2h, ph) = C
[

h2
K

∫

TK

(

<2
1(u1h, u2h, ph)+

+ <2
2(u1h, u2h, ph)

)

dΩ +

∫

TK

<2
3(u1h, u2h, ph)dΩ

]

where <1, <2, and <3 stand for the residuals,
see [3]. The constant C is determined from a
numerical experiment (cf. [3]).

Usual way to ‘measure’ the error on elements is
to compute the error related to the computed
solution, i.e. relative error. This is given by the
ratio of absolute norm of the solution error re-
lated to unit area of element TK

1

|TK |
E2(u1h, u2h, ph, TK)

to the solution norm on the whole domain Ω
related to unit area of Ω

1

|Ω|
U2(u1h, u2h, ph,Ω)

i.e.

R2(u1h, u2h, ph, TK) =

=
|Ω| E2(u1h, u2h, ph, TK)

|TK | U2(u1h, u2h, ph,Ω)
(11)

But for the similarity with a priori error esti-
mate, we use the modified absolute error defined
as

A2
m(u1h, u2h, ph, TK ,Ω, n) =

=
|Ω|E2(u1h, u2h, ph, TK)

|TK | U2(u1h, u2h, ph,Ω)
(12)

where |TK | is the mean area of elements ob-

tained as |TK | = |Ω|
n , and n denotes the number

of all elements in the domain.

6 Numerical results

In Figures 5 - 8, plots of entities that charac-
terize the flow in the channel are presented. In
Figures 5 and 6, there are streamlines and plot
of velocity component ux. Plots of velocity com-
ponent uy and pressure are in Figures 7 and 8.
The data correspond to the Reynolds number
Re = 400.
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Fig. 5. Streamlines

Fig. 6. Velocity component ux

In Fig. 10, there are values of obtained error on
elements in refined area. All obtained values are
listed in Table 2 Marking of elements for Table
2 is described in Fig. 9.
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A B C D E F G H I J K

1 1.276 0.446 0.134 0.049 0.037 0.034 0.040 0.042 0.044 0.044 0.047

2 1.413 0.461 0.083 0.035 0.039 0.044 0.048 0.053 0.058 0.065 0.076

3 1.561 0.411 0.079 0.045 0.048 0.054 0.059 0.065 0.070 0.077 0.088

4 1.610 0.354 0.077 0.051 0.056 0.062 0.067 0.072 0.077 0.082 0.089

5 1.582 0.304 0.076 0.053 0.058 0.063 0.067 0.071 0.076 0.084 0.112

6 1.423 0.251 0.070 0.049 0.054 0.057 0.061 0.065 0.071 0.090 0.131

7 1.115 0.189 0.055 0.039 0.044 0.046 0.042 0.053 0.063 0.087 0.121

8 0.699 0.116 0.037 0.025 0.028 0.030 0.033 0.039 0.053 0.076 0.098

9 0.229 0.044 0.016 0.013 0.015 0.018 0.023 0.032 0.050 0.074 0.099

10 0.262 0.045 0.017 0.019 0.022 0.027 0.033 0.044 0.063 0.091 0.120

11 0.073 0.112 0.036 0.034 0.038 0.038 0.052 0.064 0.084 0.110 0.134

12 1.129 0.186 0.054 0.047 0.052 0.059 0.068 0.082 0.101 0.122 0.135

13 1.434 0.245 0.066 0.055 0.061 0.070 0.080 0.095 0.112 0.127 0.130

14 1.574 0.299 0.072 0.058 0.063 0.074 0.086 0.101 0.117 0.127 0.127

15 1.633 0.350 0.071 0.056 0.061 0.072 0.085 0.101 0.116 0.126 0.131

16 1.511 0.402 0.072 0.051 0.054 0.066 0.079 0.094 0.110 0.123 0.135

17 1.398 0.450 0.073 0.044 0.049 0.059 0.071 0.085 0.099 0.115 0.138

18 1.266 0.441 0.133 0.054 0.049 0.053 0.065 0.074 0.085 0.097 0.124

Table 2: Obtained errors on elements

Fig. 7. Velocity component uy

7 Conclusion

Numerical results give satisfactory confirmation
of the algorithm. The application of a priori er-
ror estimates of the finite element method for
mesh refinement near the singularity is very ef-
ficient for our problem. This can be seen espe-

Fig. 8. Pressure

cially on the errors indicated on elements: the
errors are distributed very uniformly.

The algorithm is applied to design the mesh
close to an internal angle of 3

2π. Nevertheless it

5
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Fig. 9. Marking of elements for Table 2

Fig. 10. Errors on elements in the refined area

admits to generate the mesh for other angles as
well, in accordance with the parameter γ in (7)
which must be found for the respective angle.

The approach in the paper is an alternative to
the ‘classical’ one, using adaptive mesh refine-
ment, which is still much more robust.
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uglovoj točki granicy, Prikl. Mat. i Mech.,
1 (1967), 119-123
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