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Abstract: - Intrusion detection systems (IDSs) attempt to identify attacks by comparing collected data to 
predefined signatures known to be malicious (misuse-based IDSs) or to a model of legal behaviour 
(anomaly-based IDSs). In this paper we present a new design of an anomaly IDS. Design and 
development of the IDS are considered in three main steps: normal behaviour construction, anomaly-
based detection intrusion and model upgrading. A parametrical mixture model is used for behaviour 
modelling from reference data and the associated Bayesian classification. Real-time requirements are 
presented as well as detection and upgrade algorithms for the special case of Gaussian parametrical model 
and are evaluated with respect to their real-time features. 
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1. Introduction  
Intrusion detection can be defined as the process 
of identifying malicious behaviour that targets a 
network and its resources. Intrusion detection 
systems have traditionally been classified as 
either misuse-based or anomaly-based. Systems 
that use misuse-based techniques contain a 
number of attack descriptions, or ‘signatures’, 
that are matched against a stream of audit data 
looking for evidence of the modelled attacks. 
The audit data can be gathered from the network 
[1], from the operating system, or from 
application log files. Signature-based systems 
have the advantage that they usually generate 
few false positives (i.e., incorrectly flagging an 
event as malicious when it is legitimate). 
Unfortunately, they can only detect those attacks 
that have been previously specified. That is, they 
cannot detect intrusions for which they do not 
have a defined signature. 
Two major variants of intrusion detection 
systems (IDS) have emerged [2], namely host 
and network based approaches. Host based 
systems collect local data from sources internal 
to a computer, usually at the OS level. Network 
based approach variants monitor packets on the 
wire by setting the network interface to 
promiscuous mode and analysing network traffic 
[3]. 
The information system being protected 
(application, computer and/or network) is 

usually submitted to a usage configuration or 
policy that describes legitimate actions allowed 
to each entity (user, host or service) profile. 
Audit data describing entity actions or system 
states are generated (even systematically or 
trigged by the IDS) and, then, analyzed by the 
IDS, which evaluates the probability of these 
states or actions being related to an intrusion. 
Data processed by the IDS may be a sequence of 
commands executed by a user, a sequence of 
system calls launched by an application (for 
example a web client), network packets, and so 
on. Finally, the IDS can trigger some 
countermeasures to eliminate attack cause/effect, 
whenever an intrusion is detected. 
Concerning the analysis method, IDS are usually 
classified in two categories [1]. A misuse or 
knowledge-based IDS aims at detecting the 
occurrence of state or action sequences that has 
been previously identified to be an intrusion. 
Thus, in this kind of IDS, attacks must be known 
and described a priori and IDS are usually 
unable to deal with new or unknown attacks. 
Alternatively, an anomaly or behaviour-based 
IDS assumes that an intrusion can be detected by 
observing deviations from a normal or expected 
behaviour of a monitored entity. The valid 
behaviour is extracted from previous reference 
information about the system. The IDS later 
compares the extracted model with the current 
activity and raises an alert each time that a 
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certain degree of divergence from the original 
model is observed. 
In this paper, we propose a new model for 
intrusion detection following the anomaly 
detection approach. We are especially interested 
in information systems that are simultaneously 
submitted to different behaviour profiles. 
Typical examples are multi-user applications and 
computer systems or networks carrying different 
communication protocols. In such cases, audit 
data reflecting actions or system states 
associated with each system behaviour profile 
usually cannot be separated a priori. Moreover, it 
is sometimes even impossible to know how 
many profiles are present in the system 
behaviour. The proposed IDS model is intended 
to deal with both situations. 
Anomaly IDS design consists of three main 
steps. First, it is necessary to build a reference 
behaviour model for the monitored system. In 
our case, this reference behaviour should be 
modelled from observed audit data describing 
the use of the system by a representative set of 
legitimate, non-malicious entities. 
The aim is to model different entities profiles 
that could not be separated a priori by a learning 
procedure. A parametrical mixture model [4] is 
used to construct a Bayesian classification 
procedure on the observations and leads to the 
system behaviour model. Unsupervised learning 
is accomplished by fitting the mixture model 
parameters by the expectation-maximisation 
(EM) algorithm [4, 5]. As the model order may 
also be unknown, a minimum entropy criterion is 
introduced to allow model order estimation [6]. 
The next step consists in evaluating audit data 
related to new system activities to detect 
deviations between the current and the reference 
behaviours. New observed data is compared to 
the reference model by means of both a Bayesian 
classification and cluster pertinence evaluations. 
As behaviour can change, the behaviour model 
should be updated during IDS operation. This is 
the last step. In our design, the model update is 
done by re-estimation of model parameters given 
new data presented to the system. 
The design of the learning, detection and update 
phases using Bayesian techniques is the first 
contribution of the paper, the second lies in the 
discussion of real-time capabilities of the 
proposed algorithms, especially in the detection 

and update phase. Adaptations of the detection 
algorithm for the case of Gaussian mixture 
models are proposed, resulting in a linear 
complexity for the detection algorithm. 
Recursive parameter estimation is also proposed, 
as a possible alternative to real-time model 
update. 
 
2. Bayesian classification IDS model 
This section presents our anomaly IDS model. 
The idea is to build a behaviour model that takes 
into account multiple use profiles and allows a 
Bayesian classification of data as part of the 
detection algorithm. A reference audit data set 
representing the normal system behaviour is 
used to create the model with a learning 
procedure. 
Before starting to describe the model, we should 
note that audit data must be mapped into random 
variables.  Mapping audit data generated by the 
system to random variables, both during 
extraction of reference data in system behaviour 
modelling and system usage, is out of the scope 
of this discussion. Hereafter, we admit that audit 
data can be represented by a set of realisations of 
a continuous random vector R, whose 
probability distribution function (PDF) will have 
to be modelled. 
 
2.1 Parametrical Mixture and EM-
Algorithm 
In our behaviour model, the PDF of the (d-
dimensional) random vector y, whose 
realisations are mapped from the audit data 
domain, are represented by a parametrical 
mixture model [4, 5]. In such models, the 
realisations of y are regarded as being trials of 
one of the K simple models designed by a kernel 
probability function, with each kernel function 
representing the model of a use profile. 
Realisations from y are not clustered, e.g. the 
profile each realisation yi comes from is not 
observable. The mixture model fundamental 
expression, giving the probability of yi, can be 
formally expressed as: 
 

∑
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where: yi is the i-th observed data; z is the 
hidden vector that indicates which source 
(profile) data comes from (e.g. zk = 1 if data 
comes from cluster k and z = 0, otherwise); gk 
are kernel distribution functions with respective 
parameters θk, each of them modelling one of the 
use profiles; K is the model order corresponding 
to the number of sources being modelled. 
The unknown parameters in the model (Eq. (1)) 
are the set of cluster probabilities p(zk ) and the 
parameters of kernel distribution functions of 
each cluster �k, represented by  
 

[ ]kkzpzpzp θθθµ ,....,,),(),.....,(),( 2121=   (2) 
 
The (finite) mixture model represented by (1) 
has been increasingly used to model the 
distribution of a wide variety of supposed 
random phenomena [7]. An iterative algorithm 
of optimising the unknown vector µ by a 
maximum likelihood (ML) criterion has been 
defined and is called the expectation-
maximisation (EM) algorithm [5, 6]. 
 
Let   

 [ ]TkyyyY ,.....,, 21=                                          (3) 
 
Where the subscripts 1, 2, n denote an observed 
n-dimensional realisation vector of y (that has to 
be modelled). Y is regarded as the reference data 
containing representative normal behaviour 
information and is used to fit µ using the EM 
algorithm. This algorithm permits both log-
likelihood and model parameter estimation to be 
done in an iterative manner. The recursive 
process should be repeated until variation in the 
estimated log-likelihood between two 
consecutive iterations becomes small, indicating 
that the algorithm has converged to a (local) 
maximum of the log-likelihood data function, 
given that the realisation probabilities are 
expressed as in Eq. (1). As the log-likelihood 
function evaluation at the point represented by 
the parameter fitted by the EM-algorithm is not 
guaranteed to be a global maximum, a finite 
number of random initialisations of the 
parameters are realised and the EM-algorithm is 
executed different times. The results (parameter 
estimation) corresponding to a maximum log-
likelihood evaluation in all executions are kept 

as the optimal model parameters and are used 
during detection phase. 
A detailed discussion of the EM-algorithm is out 
of the scope of this paper, as it has already been 
extensively discussed in the literature. The 
reader is asked to refer to [5, 6] for a more 
general description of the EM-algorithm. 
In the particular case of Gaussian mixture 
models (GMM), e.g. mixture model with 
Gaussian kernel functions, that were used in our 
experiments presented further, the Eq. (1) should 
be rewritten replacing the general distributions 
(gk) by the normal distribution (represented by φ) 
and the distribution parameters θk by the mean 
vector (µk) and covariance matrix (Rk), as stated 
at Eq. (4), where the probability p(zk) are also 
replaced by the weighting factor wk, for notation 
simplicity. 
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For completeness, we provide the EM recursion 
equations (Eq. (5)-(6)) for the Gaussian mixture 
models: 
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2.2 Optimal Entropy-Based Estimation of 
Model Order 
 
For the purpose of the EM-algorithm, the model 
order K (which corresponds to the number of 
partitions or data sources, when using parametric 
mixture models for partitioning data) must be 
provided. Since the number of partitions is not 
known a priori, it is useful to be able to estimate 
the most probable number of partitions, as well. 
Our objective is to build an “ideal partitioning” 
estimation for K, which should be regarded as 
having the posterior probability p( k | yi) (Eq. (5) 
in the GMM case) close to unity for one value of 
k and close to zero for all the others, for each 
realisation. 
As described in [7], this ideal partitioning should 
be obtained by minimizing Shannon entropy 
given observed data, which can be evaluated for 
each observation by Eq. (9): 
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The expected value of this entropy is evaluated 
taking the mean of HK over all observed data 
(Eq. (10)): 
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Where: E* denotes an expectation estimator and 
HK is the measure in question. 
We proceed by fitting Kmax models with different 
order (K = 1, 2,...Kmax) and we evaluate the 
expected entropy (13) for each case. The 
resulting model in a minimum of this measure 
will be considered the optimum model. 
The complete algorithm of the learning phase, 
used to obtain a mixture model fitted with the 
EM-algorithm and with optimal model order (K) 
estimation can be summarised as follows: 
 
2.3 EM-Algorithm with Model Order 
Estimation 
 

(1) K = 0, Hopt = 0, Kopt = 1. 
(2) K = K+1. 

(3) Fit the K-order model to data using the 
EM- Algorithm (Eqs. 2-7). 

(4) Calculate expected value of HK (Eq. (7)). 
(5) If HK < Hopt then Hopt = HK; Kopt = K; 

and µ = µopt. 
(6) If K < Kmax, then repeat (2). 
(7) Update actual model order K with 

optimal model order: K = Kopt. 
(8) Update actual model parameters µ with 

optimal model parameters µopt. 
 
2.4 Anomaly Detection 
 
During detection, the behaviour model has been 
already fitted and is available for making 
inferences about a new data presented to the 
system. The aim is to define some penalty λ, 
which varies from 0 to 1 (e.g. 0≤λ≤1), indicating 
the degree of normality concerning this 
realisation from certainly abnormal (λ= 0) to a 
certainly normal (λ = 1) behaviour.  
Many different approaches for defining such 
criteria from the behaviour statistical model 
represented by Eq. (1) are possible. We have 
defined a detection procedure formed by two 
basic steps: a (Bayesian) classification inference 
and a cluster pertinence inference. 
The classification inference is straightforward 
for parametrical mixture models and consists of 
evaluation of the posterior cluster probabilities 
conditioned to new data y’, 
 

),....,2,1(),'( Kkforykp =                  (11) 
 
Cluster pertinence inference is more complex. 
As all the kernel distributions used in our model 
have a continuous nature, considering data 
posterior probabilities conditioned to cluster 
probability,     p(y’|k), by simple evaluation of 
the cluster probability density function is 
meaningless. A more realistic approach consists 
in evaluating the probability of new data being 
contained in some pertinence interval (Πk), 
defined as a function of cluster distribution 
parameters (µk and Rk, for instance) and the 
observation y’, which should be formally 
expressed as following (Eq. (12)): 
 

∫ Π=Π∈ kkkk dygkyp ),()'( θ                    (12) 
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Such probability should, indeed, look like some 
kind of cumulative distribution function (CDF), 
if we define Πk as stated in Eq. (13), below [10]: 
 

2
2

γ
µ

≥
−
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k

kd
k R

y
y                       (13) 

 

Where 2  and    denote given types of norm 
operators and γ is a constant that should depend 
on y’. 
Finally, detection penalty should be defined as 
Eq. (14): 
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2.5 Model Upgrading 
 
As behaviour may change, the behaviour model 
should be updated to avoid the raising of 
erroneous alerts (false positives). Updating 
should also be regarded as actualisation of 
smooth changes in system behaviour, as the 
basic model should become invalid or 
incomplete in case of expressive changes. 
In our approach, we simply update the 
estimation of model parameters. Thus, updating 
is done in the cluster probabilities and in the 
kernel parameters. Usual estimators can be used 
for continuous estimation of these model 
statistics [10]. Note that both log-likelihood and 
entropy should also be estimated and compared 
with previous values (e.g. log-likelihood and 
entropy obtained after learning phase), as it 
could give an idea about the “goodness” of the 
new model when compared to the reference one. 
 
3. Real-Time Considerations 
 
The learning procedure in the reference 
behaviour model construction is usually 
executed off-line. Computation complexity 
constraints are not strong at this stage. However, 
it is usually desirable to have detection and 
update phases being executed continuously. 
Thus, the algorithms for detection and update 
should be designed for real-time. In this section, 
we show how detection and updating algorithms 

presented above should be adapted for real-time 
execution. 
Although a formal performance evaluation of the 
proposed real-time algorithms are still in 
progress, we regard them as having a linear 
complexity, both with respect to the number of 
events (new data) presented to be analysed by 
the system and with respect to the model order. 
The IDS is designed to be implemented as 
software for execution in a conventional PC 
platform, without need of any special hardware 
for enhancing computational capacity. Thus, for 
real-time evaluation, the processing power 
available for the IDS execution should be 
comparable with those of a standard PC. As a 
preliminary reference, IDS in use-intensive 
systems should deal with thousands or even 
millions of new events per second (e.g. packets 
in a high speed network or client requests on a 
busy web/application server). 
 
3.1 Real-time Detection Algorithm with 
Gaussian Mixture Models 
 
Eq. (12) cannot be usually evaluated 
analytically. A general solution should use 
numerical evaluation that can be prohibitive for 
higher dimensions. Besides, numerical 
evaluation is computation-intensive even in the 
one-dimensional or two-dimensional cases, 
making real-time execution difficult and even 
impossible. 
Although Eq. (12) would be difficult for 
arbitrary kernel functions gk, a computational-
efficient algorithm for evaluating this integral 
equation can be established for the particular 
case of Gaussian distribution. These algorithms, 
which are discussed in this section, have been 
successfully used in the experiments presented in 
the next section, where we are essentially 
dealing with Gaussian mixture models. 
Whenever GMM is being used, evaluation of the 
Eq. (12) can be done by convenient choice of the 
undefined elements (norm operators and γ) on 
Eq. (13). 
The idea is to define Πk as the complementary 
(concave) space of the isodensity ellipsoid (in 
ℜd), whose boundary contains y’ and is centred 
in µk. This means that Πk is bounded internally 
by a d-dimensional ellipsoidal surface formed by 
all points having the same density as y’  
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Thus, rewriting of Eq.(13) gives Equation 
(16):
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is the element at α -th line and β -th column of 
the inverse covariance matrix, and γ  is done by 
(Eq. (17)): 
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This strategy is illustrated for one and two 
dimensional spaces as showed in Fig 1 and 2, 
respectively. The latter was taken from a 
bivariate Gaussian distribution, with diagonal 
covariance matrix. 
 
 

 
 
Fig1. Π for cluster with unidimensionnal 
Gaussian distribution 
 

 
 
 
Fig2. Π for a cluster with bivariate Gaussian 
distribution with diagonal covariance matrix. 
  
This procedure can be used even in the case of 
multivariate Gaussian distributions with 
unrestricted covariance matrix, as it is always 
possible to find a linear transformation that maps 
any multivariate Gaussian distribution in a 
equivalent new non correlated multivariate 
Gaussian distribution with same value for γ  as 
in the former distribution. 
As observed data can belong to a 
multidimensional space (ℜn), a generalized 
distance γ’, defined in Eq. (18), is introduced. 
This lads to a normalization of the probabilities 
expressed by Eq.(12) in data models belonging 
to different dimensional spaces, allowing 
computation of probabilities to be reduced to the 
one dimensional space, which can be executed 
by a simple lookup table procedure, making 
computational complexity feasible in real time. 
 
 
4. Conclusion and Future Work 
 
This text deals with a new anomaly IDS design 
using a parametric mixture model for behaviour 
modelling and Bayesian based detection. 
Continuous model update is accomplished by 
model parameter re-estimation. Algorithms for 
detection and update phases are designed for 
real-time operations. Preliminary 
experimentations show that proposed algorithms 
have some limitations such as that the kernel 
distributions are used to model numerical data 
with continuous and unbounded nature, the 
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Gaussian parametrical model may not be suitable 
for complex data and  that the use of mixed 
models assumes statistical independence 
between trials, which can be restrictive in some 
cases.  Despite these drawbacks the system 
presents real-time feasibility with no special 
hardware requirement. Moreover, it is being 
extended to detect security violations in a 
heterogeneous networked environment. The 
scalability, performance and fault tolerance can 
be improved when mobile agents perform 
distributed detection and do not need a central 
location where data is gathered. For instance, 
wireless networks such as Mobile Ad hoc 
NETworks are likely to be prone to security 
problems. The intrusion to the transmission 
support is relatively easy, compared to fixed 
networks 
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