
An Efficient Compression Method for Triangular
Meshes Used in Engineering

SEBASTIAN KRIVOGRAD, MLADEN TRLEP, BORUT ŽALIK

Faculty of Electrical Engineering and Computer Science
University of Maribor

Smetanova ulica 17, SI - 2000 Maribor
SLOVENIA

Abstract: - This paper presents a new approach for the lossless compression of engineering data, represented
by triangles. The method works in two steps - a topology compression followed by an entropy compression.
The topology compression is based on the five states; one is automatically recognized by the
compressor/decompressor and the remaining is coded by four commands. This approach for topology
compression has been compared with other methods and turns out to be highly competitive. Geometric data
and application-specific engineering data are also prepared for compression during the topology compression.
Namely, the compressed topological data contributes just a few percent to the normal size of the geometric and
application-specific data. General purpose compression methods are usually used for these. We compared our
method with the popular PkZip and we achieved considerably better results.

Key-Words: - FEM triangular mesh, compression, topology, geometry

1 Introduction
Free-form geometric shapes produced by various
CAD systems, 3D scanners or quality mesh
generators are usually represented by triangular
meshes [1]. Triangles are also very popular in the
Finite Elements Method (FEM), which is the most
popular and investigated method for various
engineering and scientific calculations [2]. Today
triangles are accepted directly by most graphic
accelerators and, therefore, triangular meshes can be
manipulated and visualized in real-time even on
low-cost machines. However, a problem appears
when such huge triangulated models have to be
stored or, even worse, when they have to be
transferred over the internet. Compression methods
have to be applied, in such cases.

Data compression is amongst the oldest
challenges in computer science. Many different
approaches have been suggested up to now [3].
However, the classical methods, which minimize the
redundancies in alphanumeric streams, are not
optimal for compression of the triangular meshes.
Therefore, the compression of triangular meshes has
become a popular topic over the last few years,
started by Turan’s pioneering work [4]. A further
achievement in this area was the work of Touma-
Gotsman [5]. Their method was later ameliorated by
Alliez-Desbrun and Isenburg [6, 8]. They improved
the compression rate by a simple heuristic (it will be
briefly explained in the next section). Up to now,

methods for compressing triangular meshes have
been intended for describing the boundaries of
geometric objects and their visualization, and not for
engineering applications. In FEM, for example,
different types of elements may mutually exist, and
each of them is equipped by additional application-
specific numerical information.

In this paper we present a new method for the
lossless compression of triangular meshes, as they
appear in engineering (Electromagnetic FEM data
were used (for the case study)). The presented
method, contrary to others methods, accepts
triangles of arbitrary orders (see Fig. 1) and
efficiently handles engineering application-specific
numerical information. Using experimentation we
confirmed that the proposed method provides very
promising results and that it is superior to those
general-purpose compression methods, which are
usually used in practice.

2 The Algorithm
The FEM triangular meshes carry three types of
data: geometric data for each vertex (coordinates
represented by floating-point numbers), vertex
indices needed for defining the topology (each
triangle has 3·o indices, where o defines the triangle
order (indices are represented by integers)) and
application-specific data associated with vertices
and triangles (represented by integer and/or floating-

7th WSEAS Int. Conf. on MATHEMATICAL METHODS and COMPUTATIONAL TECHNIQUES IN ELECTRICAL ENGINEERING, Sofia, 27-29/10/05 (pp223-228)

point numbers). The proposed compression
algorithm works in two steps:
1. Firstly, the topology is compressed and,

simultaneously, geometric and application-
specific data are properly arranged in the
auxiliary lists.

2. Secondly, entropy coding of the data stored in
the auxiliary lists is performed.

2.1 Topology compression
Each vertex in a triangular mesh generally defines
more triangles. The number of triangles determined
by a vertex is considered a vertex degree. At the
beginning, the triangular mesh is analyzed, and the
vertex degrees are determined.

In manifold triangular meshes, each edge is
either shared by two triangles or is part of the mesh
boundary (see Fig. 2). The border edges are
considered as active edges and stored in the list of
active edges (ListOfActiveEdges). They form one or
more mutually non-connected loops (Fig. 2). If the
mesh represents the closed surfaces, there are no
bordering edges. In this case, an arbitrary triangle is
selected and extracted from the mesh. Its edges
become members of the ListOfActiveEdges. The
vertices defining the active edges are named active
vertices and are placed in the ActiveVertices-
Structure.

The compression process starts by selecting of
one of the active edges. It is named a selected edge
es. The selection will be described later. The
remaining active edges in the same loop are then

oriented according to the first selected edge (Fig. 2).
The end vertex of the selected edge is treated as
selected vertex vs (Fig. 2).

The main idea of the algorithm is to close the
sequence of triangles around the vs starting from es
(Fig. 3). Configuration of the triangles around the es
and vs defines the characteristic states of the
algorithm (the states of the algorithm will be
explained later). The codes defining the states are
stored in the list of commands (ListOfCommands).
Triangles surrounding the selected vertex are
compressed and removed from the triangular mesh.
Their application-specific information are stored in
ListOfTriangles. After that the ListOfActiveEdges
and ActiveVerticesStructure are updated. The
algorithm is terminated when the ListOfActiveEdges
is empty.

The efficiency of the algorithm is highly
depended on the lengths of the same commands. To
increase this length, Alliez-Desbrun proposed a
heuristic for selecting the es as follows: for all active
vertices, the number of non-compressed surrounded
triangles ts are determined [6]. If there are more
vertices with the same ts, their immediate neighbours
are visited. For each neighbour, the number of non-
compressed surrounding triangles is determined and
this number is added to the corresponding ts. This
procedure continues until only one vertex with
minimal ts remains, and it determines the next
selected edge es. Our implementation is simpler and
also faster. The hash table is used for selecting the
next selected edge. Vertex position in the hash table
depends only on the number of non-compressed

es

v s
Fig. 2: Input manifold triangular mesh

es v s

Fig. 3: The compression process wraps around

selected vertex

a) b) c)

Fig, 1: FEM data of a) first, b) second and c) third order

7th WSEAS Int. Conf. on MATHEMATICAL METHODS and COMPUTATIONAL TECHNIQUES IN ELECTRICAL ENGINEERING, Sofia, 27-29/10/05 (pp223-228)

triangles surrounding the vertex. Selection of the
next es is now very fast: the first vertex in the hash
table with the lowest number of non-compressed
triangles, determines the next es.

2.1.1 States of the compression process
The presented approach uses five different states.
One of them is solved automatically, the rest are
expressed by only four commands (Gumhold-
Strasser, for example, uses seven commands in his
approach [7]). The reason for reducing the number
of commands is the wish for short codes describing
the commands and for long series of the same
commands, for efficient entropy coding.
• ADD. This command is used when more than

one triangle originates in vertex vs regarding the
edge es (Fig. 4a). In this case we compress all
uncompressed triangles surrounding vertex vs in
one step. In the situation shown in Fig. 4,
command ADD inserts coordinates of the
vertices and all application-specific information
related to the vertices vi, vj and vk into
ListOfVertices, and their vertex degrees into
ListOfDegrees. When there are triangles of
second and higher orders then the inner vertices
are inserted in the ListOfVertices in the order in
which they are met. In Fig. 4 we have triangles
of second order so additionally stored vertices
are vm1, vm3, vm2, vm4, vm5, vm6.. In this way, the
topological data (stored in ListOf-Commands,
ListOfDegrees and ListOfNumbers) do not
change. At the end the compressed triangles are
marked as used and their application specific
data are inserted into ListOfTriangles. The

ListOfActiveEdges and the hash table storing
active vertices are updated to describe the
situation shown in Fig. 4b. The command ADD
is the most frequently used, all following
commands just solve special cases.

• ADD ONE. It is used when more than two
triangles originate in the selected vertex vs, and
any of the vertices around vs has already been
used, except the first one. In Fig. 5a, vertex vj
has already been used and, therefore, the
command ADD cannot be applied. In such a
case, only the first triangle determined by vertex
vi is compressed.

• SPLIT MERGE. This command is applied in
two cases:
o The loop has to be split when:

 more than one triangle originates in the
selected vertex vs,

 the vertex of the first triangle has already
been used (vertex vi in Fig. 6a), and

 vi is a member of the same loop as vs.
Because the decompressing algorithm does
not know which vertex is vertex vi, its
variable index is inserted into
ListOfNumbers. The loop is split by inserting
a chain of vertices starting from vertex vu and
ending in vertex vv (Fig. 6a). The number of
vertices in the chain is inserted into
ListOfNumbers and the information about the
vertices into ListOfVertices and ListOf-
Degrees. In this way, triangles shaded in Fig.
6a are compressed causing division of the
loop (see Fig. 6b). All information about

es

v i

v s

v j

v k
vm 1

vm 2

a)

v i
v j

v k

b)

Fig. 5: Command ADD ONE: detection of the
state (a), result (b)

es

v i

v s

v j

v l

vm 1

vm 2

vm 3 vm 4

vm 5

vm 6 vm 7

v k

a)

v i
v j

v k

v l

vm 1

vm 2 vm 5

vm 7

b)

Fig. 4: Command ADD: beginning state (a),
ending state (b)

7th WSEAS Int. Conf. on MATHEMATICAL METHODS and COMPUTATIONAL TECHNIQUES IN ELECTRICAL ENGINEERING, Sofia, 27-29/10/05 (pp223-228)

compressed triangles are inserted into
ListOfTriangles as they are processed.

o The equivalent situation is shown in Fig. 7,
where two loops are merged. In this case vi is
not a member of the same loop as vs. Both
loops have to be oriented in the same way.

• SKIP. This command can only be caused by the
command SPLIT MERGE. Namely, it could
happen that a vertex in the chain of vertices has
already been used. In this case, the selected edge
is left in ListOfActiveEdges and the next edge
from this list is selected.

• The algorithm is able to automatically close the
round around any vertex when its vertex degree
number becomes 1. Fig. 8a shows this case and
the result is presented in Fig. 8b. In this way, the
number of used commands is reduced.

These commands are also sufficient for processing
non-manifold triangular meshes. Namely, such
meshes can be transformed into manifold meshes as
described in [7].

2.2 Entropy coding
In the second step all lists, except ListOfActiveEdges
and ActiveVerticesStructure, are compressed further.
Namely, ListOfActiveEdges and ActiveVertices-
Structure change dynamically during compression
and these changes must be reproduced exactly by
the decompressor from the information obtained
from other list.

The lists which are compressed, store either
integer or floating-point numbers. In engineering,
floating-point numbers are represented by
exponential notation consisting of mantissa and
exponent. In our case, the exponents and the
mantissas are considered individually. The
exponents are integer numbers so they do not need
any additional preprocessing. Mantissas are floating-
point numbers represented by 32(64) bits. We
consider the 32 bit floating-point number as 32 bit
unsigned integer. For example 1.91452 is
represented by hexadecimal code 0x3FF50F1F what
is considered as unsigned integer 1073024799, or -
7.48013 is converted into 3236912442
(0xC0EF5D3A) [9]. In this way, all floating-point
numbers can be compressed by the same algorithms
as integer numbers.

es

v v e j

v k

v j

v s

e i

v u

v i

a)

es

v i

v k

v j

v s

e i
v v

vu

b)

Fig. 6: Split by command SPLIT MERGE: chain
of triangles (a), result (b)

es

v i
e j

v k

v j

v s

e i
v v

vu

a)

es

v i

v k

v j

v s

e i
v v

vu

b)

Fig. 7: Merge by command SPLIT MERGE:
chain of triangles (a), result (b)

v i

v k

v l
a)

vk

v l
b)

Figure 8: Automatic closure: detection of the state
(a), result (b)

7th WSEAS Int. Conf. on MATHEMATICAL METHODS and COMPUTATIONAL TECHNIQUES IN ELECTRICAL ENGINEERING, Sofia, 27-29/10/05 (pp223-228)

Ultimately, in the end each list is sent through
the entropy coding algorithm. The minimum value
of the whole list is found, stored and subtracted from
all other elements in the list. If it happens that all
elements are equal, all differences are 0. In this case,
entropy coding is terminated, otherwise each
number is divided into bytes and coded either by
Huffman coding, adaptive Huffman coding,
arithmetic coding, or RLE [3].

3 Results
Two types of tests were performed:
• Firstly, the efficiency of our topology

compression algorithm was tested against the
Touma-Gotsman and Isenburg algorithms [5, 8].
These two methods are considered as the most
efficient algorithms for topology compression
available at the moment. This comparison is
possible as triangles of the second and the higher
orders do not influence the topological
information.

• A comparison of compression of the complete
data set of the engineering data (triangular FEM
meshes from electromagnetic analysis were
used) was made against the popular and widely
used PkZip package (WinZip 9.0 [10]). Namely,
Touma-Gotsman and Isenburg implementations
used lossy compression of geometric data, which
is enough for visualization [5, 8]. They also do
not support the compression of engineering
application specific data.

3.1 Comparison of topology compression
For comparison of topology compression the non-
engineering data were used, where the total number
of bytes needed for compressing the topology were
compared. The proposed implement-tation is, on
average, 4% better than the Touma-Gotsman
algorithm and around 3% worse than the Isenburg
algorithm (see Table 1) [5, 8].

However, topological data represent just a small
part of data being compressed. Geometric data and
engineering-specific data require much more space.

FEM data from electromagnetic (see Fig. 10) was
used in the experiments. In this case, vertices and
triangles are associated with the following data:
• vertices: geometric data (x and y coordinates

represented by floating-point numbers), value of
unknown function of electric or magnetic
potential in this vertex (floating-point number),
and type of boundary condition (integer
number).

• triangles: indices of vertices defining the triangle
(topology information compressed according to
the description in Section 2), type of material
covered by this triangle (integer number),
property of the used material (floating-point
number) and source-value of the electro-
magnetic field (two floating-point numbers).

The results are summarized in Table 2, where DAT:
represents the original size of the input data stored in
ASCII file, DAT.ZIP: means the size of compressed
input file with PkZip, BDAT: represents the size of
the input data using binary file. BDAT.ZIP: means
the compressed size of the input binary file using
PkZip, and CDAT: represents the compressed input
data using the proposed method.

As can be seen in Table 2, the proposed method
is very efficient as the compressed file is less than
5% of the original data stored in ASCII. It is also
much better than PkZip. If the input data are in
ASCII format, the proposed method gives 360%
better results that PkZip. 225% better compression
rates were also achieved than PkZip if the input data
are in binary file.

Model 2 Triangulated model 2

Fig. 10: Real FEM examples

TG Isenburg Our method Name No. of
vertices

No. of
triangles B b/v B b/v B b/v

% of
TG

% of
Isenb.

Snail 760 720l 87 0.9158 75 0.7895 52 0.5474 59.77 69.33
Puma 1,204 752 499 3.3156 328 2.1794 303 2.0133 60.72 92.38

Triceratops 2,832 5,660 767 2.1667 671 1.8955 747 2.1102 97.39 111.33
Teeth 29,152 58,300 8,176 2.2437 7,869 2.1594 8,132 2.2316 99.46 103.34

Earthing 46,625 59,680 10,274 1.7628 6,561 1.1257 5,630 0.9660 54.99 85.81
0300 90,000 178,802 32 0.0028 30 0.0027 23 0.0020 71.88 76.67
Male 109,961 219,918 27,019 1.9657 26,172 1.9041 27,005 1.9647 99.95 103.18
Table 1: Comparison of the total number of bytes needed for compression of all topological data

7th WSEAS Int. Conf. on MATHEMATICAL METHODS and COMPUTATIONAL TECHNIQUES IN ELECTRICAL ENGINEERING, Sofia, 27-29/10/05 (pp223-228)

4 Conclusion
This paper introduces a new efficient approach

for the compression of triangular meshes,
specialized for engineering data. In this case,
vertices and triangles carry additional engineering
information. In addition, triangles can have different
orders. The compression is divided into two parts.
Firstly, topology compression is performed
independently of application specific data. During
topology compression these data and geometric data
are prepared for the second step - entropy coding.

The topology compression was compared with
the Touma-Gotsman and Isenburg approaches [5, 8].
The presented algorithm is aligned between the
Touma-Gotsman and Isenburg approach (over 150
examples were estimated in our tests).

The proposed methods for triangular mesh
compression have not been applied to engineering
data up to now. Usually, general methods such as
PkZip have been applied, when compression was
needed. However, geometric and application-
specific data require much more memory space than
topology, when topology is properly compressed.

The aim of this work was to develop a method
suitable for engineering applications. As shown by
the experiments, this proposed method achieves
stimulative results. It compresses the input ASCII
file describing the triangular mesh equipped with
engineering data to 5% of the initial data size.
Comparison with popular PkZip was also carried
out. The proposed method is better by 360% when
the ASCII file is compressed and by 225% when
data are stored in binary files.

In the future the proposed method will be
extended to other types of finite elements, such as
rectangles, cubes and tetrahedral.

Acknowledgements:
We are grateful to the Slovenian Research Agency
for supporting this research under the project Z2-

6661-0769-04/2.12 - Compression of elements
appearing in the final elements methods (FEM)

References:
[1] Simpson B., Hitschfeld N., Rivera M.-C.,

Approximate Shape Quality Mesh Generation.
Engineering with Computers, Vol.17, No.3,
2001, pp.287-298.

[2] Trlep M., Hribernik B., Unified Approach to
Solving a Steady-state Electromagnetic Field.
IEEE Transactions on Magnetics, Vol.33, No.2,
1997, pp. 1974-1977.

[3] Salomon D., Data Compression: The Complete
Reference. Springer-Verlag, New York, 1997.

[4] Turan G., On the Succinct Representation Of
Graphs. Discrete Applied Mathematics, Vol.8,
No.3, 1984, pp. 289-294.

[5] Touma C., Gotsman C., Triangle Mesh
Compression. Graphics Interface’98 Conference
Proceedings, 1998, pp. 26-34.

[6] Alliez P., Desbrun M., Valence-Driven
Connectivity Encoding for 3D Meshes.
Computer Graphics Forum, Vol.20, No.3, 2001,
pp. 480-489.

[7] Gumhold S., Strasser W., Real Time
Compression of Triangle Mesh Connectivity.
Computer Graphics (SIGGRAPH’98), Vol.32,
1998, pp. 133-140.

[8] Isenburg M., Compressing Polygon Mesh
Connectivity with Degree Duality Prediction. In:
Graphics Interface’02 Conference Proceedings,
2002, pp. 161-170.

[9] IEEE Standard 754 Floating Point Numbers.
http://research.microsoft.com/hollasch/cgindex/c
oding/ieeefloat.html

[10]http://www.winzip.com.

Sizes [B] No. Of.
Vert.

No. Of.
Triang. Order DAT DAT.ZIP BDAT BDAT.ZIP CDAT

7,771 15,482 1 1,682,170 275,267 557,840 173,747 75,959
31,023 15,482 2 3,611,769 680,534 1,115,656 456,071 233,958
54,275 15,482 3 6,733,451 1,299,409 1,673,472 734,455 373,982
10,832 21,470 1 2,336,628 340,192 774,480 226,990 82,202
43,133 21,470 2 5,016,487 901,365 1,548,936 626,695 292,422
75,434 21,470 3 9,349,508 1,763,432 2,323,392 1,019,128 487,178
13,971 27,564 1 3,004,359 456436 995,336 304,878 103,729
55,505 27,564 2 6,449,453 1,201,030 1,990,648 824,258 373,223
97,039 27,564 3 12,209,755 2,341,647 2,985,960 1,333,650 623,056

Table 2: Comparison of total sizes of FEM data

7th WSEAS Int. Conf. on MATHEMATICAL METHODS and COMPUTATIONAL TECHNIQUES IN ELECTRICAL ENGINEERING, Sofia, 27-29/10/05 (pp223-228)

