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Abstract: - This paper presents a new approach for the lossless compression of engineering data, represented 
by triangles. The method works in two steps - a topology compression followed by an entropy compression. 
The topology compression is based on the five states; one is automatically recognized by the 
compressor/decompressor and the remaining is coded by four commands. This approach for topology 
compression has been compared with other methods and turns out to be highly competitive. Geometric data 
and application-specific engineering data are also prepared for compression during the topology compression. 
Namely, the compressed topological data contributes just a few percent to the normal size of the geometric and 
application-specific data. General purpose compression methods are usually used for these. We compared our 
method with the popular PkZip and we achieved considerably better results. 
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1   Introduction 
Free-form geometric shapes produced by various 
CAD systems, 3D scanners or quality mesh 
generators are usually represented by triangular 
meshes [1]. Triangles are also very popular in the 
Finite Elements Method (FEM), which is the most 
popular and investigated method for various 
engineering and scientific calculations [2]. Today 
triangles are accepted directly by most graphic 
accelerators and, therefore, triangular meshes can be 
manipulated and visualized in real-time even on 
low-cost machines. However, a problem appears 
when such huge triangulated models have to be 
stored or, even worse, when they have to be 
transferred over the internet. Compression methods 
have to be applied, in such cases. 

Data compression is amongst the oldest 
challenges in computer science. Many different 
approaches have been suggested up to now [3]. 
However, the classical methods, which minimize the 
redundancies in alphanumeric streams, are not 
optimal for compression of the triangular meshes. 
Therefore, the compression of triangular meshes has 
become a popular topic over the last few years, 
started by Turan’s pioneering work [4]. A further 
achievement in this area was the work of Touma-
Gotsman [5]. Their method was later ameliorated by 
Alliez-Desbrun and Isenburg [6, 8]. They improved 
the compression rate by a simple heuristic (it will be 
briefly explained in the next section). Up to now, 

methods for compressing triangular meshes have 
been intended for describing the boundaries of 
geometric objects and their visualization, and not for 
engineering applications. In FEM, for example, 
different types of elements may mutually exist, and 
each of them is equipped by additional application-
specific numerical information. 

In this paper we present a new method for the 
lossless compression of triangular meshes, as they 
appear in engineering (Electromagnetic FEM data 
were used (for the case study)). The presented 
method, contrary to others methods, accepts 
triangles of arbitrary orders (see Fig. 1) and 
efficiently handles engineering application-specific 
numerical information. Using experimentation we 
confirmed that the proposed method provides very 
promising results and that it is superior to those 
general-purpose compression methods, which are 
usually used in practice. 
 
 
2   The Algorithm 
The FEM triangular meshes carry three types of 
data: geometric data for each vertex (coordinates 
represented by floating-point numbers), vertex 
indices needed for defining the topology (each 
triangle has 3·o indices, where o defines the triangle 
order (indices are represented by integers)) and 
application-specific data associated with vertices 
and triangles (represented by integer and/or floating-
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point numbers). The proposed compression 
algorithm works in two steps: 
1.  Firstly, the topology is compressed and, 

simultaneously, geometric and application-
specific data are properly arranged in the 
auxiliary lists. 

2.  Secondly, entropy coding of the data stored in 
the auxiliary lists is performed. 

 
2.1 Topology compression 
Each vertex in a triangular mesh generally defines 
more triangles. The number of triangles determined 
by a vertex is considered a vertex degree. At the 
beginning, the triangular mesh is analyzed, and the 
vertex degrees are determined. 

In manifold triangular meshes, each edge is 
either shared by two triangles or is part of the mesh 
boundary (see Fig. 2). The border edges are 
considered as active edges and stored in the list of 
active edges (ListOfActiveEdges). They form one or 
more mutually non-connected loops (Fig. 2). If the 
mesh represents the closed surfaces, there are no 
bordering edges. In this case, an arbitrary triangle is 
selected and extracted from the mesh. Its edges 
become members of the ListOfActiveEdges. The 
vertices defining the active edges are named active 
vertices and are placed in the ActiveVertices-
Structure. 

The compression process starts by selecting of 
one of the active edges. It is named a selected edge 
es. The selection will be described later. The 
remaining active edges in the same loop are then 

oriented according to the first selected edge (Fig. 2). 
The end vertex of the selected edge is treated as 
selected vertex vs (Fig. 2).  

The main idea of the algorithm is to close the 
sequence of triangles around the vs starting from es 
(Fig. 3). Configuration of the triangles around the es 
and vs defines the characteristic states of the 
algorithm (the states of the algorithm will be 
explained later). The codes defining the states are 
stored in the list of commands (ListOfCommands). 
Triangles surrounding the selected vertex are 
compressed and removed from the triangular mesh. 
Their application-specific information are stored in 
ListOfTriangles. After that the ListOfActiveEdges 
and ActiveVerticesStructure are updated. The 
algorithm is terminated when the ListOfActiveEdges 
is empty. 

The efficiency of the algorithm is highly 
depended on the lengths of the same commands. To 
increase this length, Alliez-Desbrun proposed a 
heuristic for selecting the es as follows: for all active 
vertices, the number of non-compressed surrounded 
triangles ts are determined [6]. If there are more 
vertices with the same ts, their immediate neighbours 
are visited. For each neighbour, the number of non-
compressed surrounding triangles is determined and 
this number is added to the corresponding ts. This 
procedure continues until only one vertex with 
minimal ts remains, and it determines the next 
selected edge es. Our implementation is simpler and 
also faster. The hash table is used for selecting the 
next selected edge. Vertex position in the hash table 
depends only on the number of non-compressed 

es

v s  
Fig. 2: Input manifold triangular mesh 

es v s

 
Fig. 3: The compression process wraps around 

selected vertex 

   
a) b) c) 

Fig, 1: FEM data of a) first, b) second and c) third order 
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triangles surrounding the vertex. Selection of the 
next es is now very fast: the first vertex in the hash 
table with the lowest number of non-compressed 
triangles, determines the next es. 
 
2.1.1   States of the compression process  
The presented approach uses five different states. 
One of them is solved automatically, the rest are 
expressed by only four commands (Gumhold-
Strasser, for example, uses seven commands in his 
approach [7]). The reason for reducing the number 
of commands is the wish for short codes describing 
the commands and for long series of the same 
commands, for efficient entropy coding. 
• ADD. This command is used when more than 

one triangle originates in vertex vs regarding the 
edge es (Fig. 4a). In this case we compress all 
uncompressed triangles surrounding vertex vs in 
one step. In the situation shown in Fig. 4, 
command ADD inserts coordinates of the 
vertices and all application-specific information 
related to the vertices vi, vj and vk into 
ListOfVertices, and their vertex degrees into 
ListOfDegrees. When there are triangles of 
second and higher orders then the inner vertices 
are inserted in the ListOfVertices in the order in 
which they are met. In Fig. 4 we have triangles 
of second order so additionally stored vertices 
are vm1, vm3, vm2, vm4, vm5, vm6.. In this way, the 
topological data (stored in ListOf-Commands, 
ListOfDegrees and ListOfNumbers) do not 
change. At the end the compressed triangles are 
marked as used and their application specific 
data are inserted into ListOfTriangles. The 

ListOfActiveEdges and the hash table storing 
active vertices are updated to describe the 
situation shown in Fig. 4b. The command ADD 
is the most frequently used, all following 
commands just solve special cases. 

• ADD ONE. It is used when more than two 
triangles originate in the selected vertex vs, and 
any of the vertices around vs has already been 
used, except the first one. In Fig. 5a, vertex vj 
has already been used and, therefore, the 
command ADD cannot be applied. In such a 
case, only the first triangle determined by vertex 
vi is compressed. 

• SPLIT MERGE. This command is applied in 
two cases: 
o The loop has to be split when: 

 more than one triangle originates in the 
selected vertex vs, 

 the vertex of the first triangle has already 
been used (vertex vi in Fig. 6a), and  

 vi is a member of the same loop as vs. 
Because the decompressing algorithm does 
not know which vertex is vertex vi, its 
variable index is inserted into 
ListOfNumbers. The loop is split by inserting 
a chain of vertices starting from vertex vu and 
ending in vertex vv (Fig. 6a). The number of 
vertices in the chain is inserted into 
ListOfNumbers and the information about the 
vertices into ListOfVertices and ListOf-
Degrees. In this way, triangles shaded in Fig. 
6a are compressed causing division of the 
loop (see Fig. 6b). All information about 

es

v i

v s

v j

v k
vm 1

vm 2

 
a) 
 

v i
v j

v k

 
b) 

Fig. 5: Command ADD ONE: detection of the 
state (a), result (b) 
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v j

v l
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a) 
 

v i
v j
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v l

vm 1

vm 2 vm 5

vm 7

 
b) 

Fig. 4: Command ADD: beginning state (a), 
ending state (b) 
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compressed triangles are inserted into 
ListOfTriangles as they are processed. 

o The equivalent situation is shown in Fig. 7, 
where two loops are merged. In this case vi is 
not a member of the same loop as vs. Both 
loops have to be oriented in the same way. 

• SKIP. This command can only be caused by the 
command SPLIT MERGE. Namely, it could 
happen that a vertex in the chain of vertices has 
already been used. In this case, the selected edge 
is left in ListOfActiveEdges and the next edge 
from this list is selected. 

• The algorithm is able to automatically close the 
round around any vertex when its vertex degree 
number becomes 1. Fig. 8a shows this case and 
the result is presented in Fig. 8b. In this way, the 
number of used commands is reduced. 

These commands are also sufficient for processing 
non-manifold triangular meshes. Namely, such 
meshes can be transformed into manifold meshes as 
described in [7]. 

 
2.2 Entropy coding 
In the second step all lists, except ListOfActiveEdges 
and ActiveVerticesStructure, are compressed further. 
Namely, ListOfActiveEdges and ActiveVertices-
Structure change dynamically during compression 
and these changes must be reproduced exactly by 
the decompressor from the information obtained 
from other list. 

The lists which are compressed, store either 
integer or floating-point numbers. In engineering, 
floating-point numbers are represented by 
exponential notation consisting of mantissa and 
exponent. In our case, the exponents and the 
mantissas are considered individually. The 
exponents are integer numbers so they do not need 
any additional preprocessing. Mantissas are floating-
point numbers represented by 32(64) bits. We 
consider the 32 bit floating-point number as 32 bit 
unsigned integer. For example 1.91452 is 
represented by hexadecimal code 0x3FF50F1F what 
is considered as unsigned integer 1073024799, or -
7.48013 is converted into 3236912442 
(0xC0EF5D3A) [9]. In this way, all floating-point 
numbers can be compressed by the same algorithms 
as integer numbers. 
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b) 

Fig. 6: Split by command SPLIT MERGE: chain 
of triangles (a), result (b) 
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Fig. 7: Merge by command SPLIT MERGE: 
chain of triangles (a), result (b) 
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Figure 8: Automatic closure: detection of the state 
(a), result (b) 
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Ultimately, in the end each list is sent through 
the entropy coding algorithm. The minimum value 
of the whole list is found, stored and subtracted from 
all other elements in the list. If it happens that all 
elements are equal, all differences are 0. In this case, 
entropy coding is terminated, otherwise each 
number is divided into bytes and coded either by 
Huffman coding, adaptive Huffman coding, 
arithmetic coding, or RLE [3]. 

 
 

3   Results 
Two types of tests were performed: 
• Firstly, the efficiency of our topology 

compression algorithm was tested against the 
Touma-Gotsman and Isenburg algorithms [5, 8]. 
These two methods are considered as the most 
efficient algorithms for topology compression 
available at the moment. This comparison is 
possible as triangles of the second and the higher 
orders do not influence the topological 
information. 

• A comparison of compression of the complete 
data set of the engineering data (triangular FEM 
meshes from electromagnetic analysis were 
used) was made against the popular and widely 
used PkZip package (WinZip 9.0 [10]). Namely, 
Touma-Gotsman and Isenburg implementations 
used lossy compression of geometric data, which 
is enough for visualization [5, 8]. They also do 
not support the compression of engineering 
application specific data. 

 
3.1 Comparison of topology compression 
For comparison of topology compression the non-
engineering data were used, where the total number 
of bytes needed for compressing the topology were 
compared. The proposed implement-tation is, on 
average, 4% better than the Touma-Gotsman 
algorithm and around 3% worse than the Isenburg 
algorithm (see Table 1) [5, 8]. 

However, topological data represent just a small 
part of data being compressed. Geometric data and 
engineering-specific data require much more space. 

FEM data from electromagnetic (see Fig. 10) was 
used in the experiments. In this case, vertices and 
triangles are associated with the following data: 
• vertices: geometric data (x and y coordinates 

represented by floating-point numbers), value of 
unknown function of electric or magnetic 
potential in this vertex (floating-point number), 
and type of boundary condition (integer 
number). 

• triangles: indices of vertices defining the triangle 
(topology information compressed according to 
the description in Section 2), type of material 
covered by this triangle (integer number), 
property of the used material (floating-point 
number) and source-value of the electro-
magnetic field (two floating-point numbers). 

The results are summarized in Table 2, where DAT: 
represents the original size of the input data stored in 
ASCII file, DAT.ZIP: means the size of compressed 
input file with PkZip, BDAT: represents the size of 
the input data using binary file. BDAT.ZIP: means 
the compressed size of the input binary file using 
PkZip, and CDAT: represents the compressed input 
data using the proposed method. 

As can be seen in Table 2, the proposed method 
is very efficient as the compressed file is less than 
5% of the original data stored in ASCII. It is also 
much better than PkZip. If the input data are in 
ASCII format, the proposed method gives 360% 
better results that PkZip. 225% better compression 
rates were also achieved than PkZip if the input data 
are in binary file. 

 

  
Model 2 Triangulated model 2 

Fig. 10: Real FEM examples 

TG Isenburg Our method Name No. of 
vertices 

No. of 
triangles B b/v B b/v B b/v 

% of 
TG 

% of 
Isenb. 

Snail 760 720l 87 0.9158 75 0.7895 52 0.5474 59.77 69.33 
Puma 1,204 752 499 3.3156 328 2.1794 303 2.0133 60.72 92.38 

Triceratops 2,832 5,660 767 2.1667 671 1.8955 747 2.1102 97.39 111.33 
Teeth 29,152 58,300 8,176 2.2437 7,869 2.1594 8,132 2.2316 99.46 103.34 

Earthing 46,625 59,680 10,274 1.7628 6,561 1.1257 5,630 0.9660 54.99 85.81 
0300 90,000 178,802 32 0.0028 30 0.0027 23 0.0020 71.88 76.67 
Male 109,961 219,918 27,019 1.9657 26,172 1.9041 27,005 1.9647 99.95 103.18 
Table 1: Comparison of the total number of bytes needed for compression of all topological data
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4   Conclusion 
This paper introduces a new efficient approach 

for the compression of triangular meshes, 
specialized for engineering data. In this case, 
vertices and triangles carry additional engineering 
information. In addition, triangles can have different 
orders. The compression is divided into two parts. 
Firstly, topology compression is performed 
independently of application specific data. During 
topology compression these data and geometric data 
are prepared for the second step - entropy coding. 

The topology compression was compared with 
the Touma-Gotsman and Isenburg approaches [5, 8]. 
The presented algorithm is aligned between the 
Touma-Gotsman and Isenburg approach (over 150 
examples were estimated in our tests). 

The proposed methods for triangular mesh 
compression have not been applied to engineering 
data up to now. Usually, general methods such as 
PkZip have been applied, when compression was 
needed. However, geometric and application-
specific data require much more memory space than 
topology, when topology is properly compressed. 

The aim of this work was to develop a method 
suitable for engineering applications. As shown by 
the experiments, this proposed method achieves 
stimulative results. It compresses the input ASCII 
file describing the triangular mesh equipped with 
engineering data to 5% of the initial data size. 
Comparison with popular PkZip was also carried 
out. The proposed method is better by 360% when 
the ASCII file is compressed and by 225% when 
data are stored in binary files. 

In the future the proposed method will be 
extended to other types of finite elements, such as 
rectangles, cubes and tetrahedral. 
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Sizes [B] No. Of. 
Vert. 

No. Of. 
Triang. Order DAT DAT.ZIP BDAT BDAT.ZIP CDAT 

7,771 15,482 1 1,682,170 275,267 557,840 173,747 75,959 
31,023 15,482 2 3,611,769 680,534 1,115,656 456,071 233,958 
54,275 15,482 3 6,733,451 1,299,409 1,673,472 734,455 373,982 
10,832 21,470 1 2,336,628 340,192 774,480 226,990 82,202 
43,133 21,470 2 5,016,487 901,365 1,548,936 626,695 292,422 
75,434 21,470 3 9,349,508 1,763,432 2,323,392 1,019,128 487,178 
13,971 27,564 1 3,004,359 456436 995,336 304,878 103,729 
55,505 27,564 2 6,449,453 1,201,030 1,990,648 824,258 373,223 
97,039 27,564 3 12,209,755 2,341,647 2,985,960 1,333,650 623,056 

Table 2: Comparison of total sizes of FEM data
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