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Abstract: -The math model of optimization problem is established by describing the electric power network 
equations as the hybrid form with node voltage and line current based on π  equivalence circuit of power 
equipment, there the objective function is performed with a product of line current magnitude square and line 
resistance. It is indicated that Kuhn-Tacker optimal conditions are simple and convenient while the line current 
is considered as state variable in this paper. Finally, the case study is made by grads method at IEEE-30 system, 
it is explained that calculation efficiency of proposed method is higher than the method based on node voltage 
with direct expression due to the more information about state variable is included in the objective function. 
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1   Introduction 
The node voltage analysis is the main method in 
conventional power system application considering 
the nodal injective power and node voltage as 
variable, the line power is only used in reduced 
analysis for example in DC power flow calculation, 
but the line current is rarely taken into state variable 
account. 
     The line current method is proposed by Goswami 
in literatures [1]~[3] with the advantages which is 
able to treat with the mesh and quickly convergences 
considering the load as constant impedance model 
and the grounding branch of a line is ignored. It is 
feasible in the distribution network while these 
assumptions are generally unsuccessful in the 
transmission network. Therefore, there are some 
limits. The basic line model is established in [4,5] 
discarded the above terms by taking the nodal 
injected power as a voltage source and the impedance 
branch as link branch and the grounding branch as 
tree branch based on the π  equivalence circuit, 
therefore the line analysis method is introduced for 
electric power network. The line current is actually 
line current while there is no line degradation, which 
can be considered as state variable, so the analysis in 
power network is more direct. 
     The optimal power flow model is best method to 
solve the reactive power optimization problem up to 
now included the interior point method[6,7] and the 
evolvement arithmetic[8]~[11] and other method[11] 
etc. The summarization is made in [12] and the 
shortcomings are pointed out that calculating 
efficiency must be ulteriorly improved and the 

dealing with inequality constraints is not very valid. 
     The math model of optimization problem is 
established by describing the electric power network 
equations as the hybrid form with node voltage and 
line current based on π  equivalence circuit of power 
equipment, there the objective function is performed 
with a product of line current magnitude square and 
line resistance. It is indicated that Kuhn-Tacker 
optimal conditions are simple and convenient while 
the line current is considered as state variable in this 
paper. Finally, the case study is made by grads 
method at IEEE-30 system, it is explained that 
calculation efficiency of proposed method is higher 
than the method based on node voltage with direct 
expression due to the more information about state 
variable is included in the objective function. 
 
 
2   The network equations 
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Fig. 1  Basic π  Circuit 
 

The above π -type equivalence circuit is the basic 
unit of power network analysis while the load is 
considered as a voltage source showed in figure 1. 
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     In figure 1, iii jqps +=  and jjj jqps +=  

denote nodal injected power; iii jfeu +=  and 

jjj jfeu +=  denote the node voltage; line current 

is r
l

a
ll jiii += ; the subscript Nji ,,2,1, L=  

denote the node number; the subscript Ll ,,2,1 L=  
denotes the line number. Therefore, line current 
equation can be represented as below: 
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It is obtained by expanding formula (1): 
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However, the voltage at node i  of the equivalent 
voltage source of the load branch is: 
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It follows from (3) that: 

ii
il

llii
il

lii jqpjBGuuiu −=+− ∑∑
∈

∗

∈

∗

)(       (4) 

Above equation is represented as the plural form: 
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Furthermore, it is obtained: 
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While the conductance lG  of the ground branch is 
ignored, it is chenged as follows: 
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     As for node j , there is the same form of nodal 
voltage function with the node i . The equations (2) 
and (7) are the basic models of the power network. 
 
 
3   Reactive power optimization 
problem 
It is to minimize the network losses as the objective 
function of reactive power optimization problem: 

∑
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where Ll ,,2,1 L=  denotes line number; lI  and 

lR  are the current magnitude and resistance of l -th 
line. The equality constraints are network equations, 
while the conductance of grounding branch is 
ignored they can be describe as following polar 
coordinates form: 
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where iiV θ,  respectively are the voltage magnitude 
and angle of node i ; lφ  is the current angle of line l ; 

ciq  is the compensatory capacity in reactive power of 
node i . The above formulas can be change as: 
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The line current variables also satisfy following 
equations by setting ijlijl XXRR == , : 
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(12) 
The inequality constraints of reactive power 
optimization problem are: 

maxmin
iii VVV ≤≤                         (13) 

and: 
maxmin
cicici qqq ≤≤                         (14) 

     The reactive power optimization problem is 
composed with formulas (8), (11)~(14). 
 
 
4   Kuhn-Tacker conditions 
While the reactive power optimization problem is 
described as the form of nonlinear programming, the 
objective function is: 

0),( =yxf                          (15) 
The equality constraint is: 

0),( =yxg                          (16) 
The inequality constraint is: 

0),( ≤yxh                           (17) 
where, x  is the state variable; y  is the control 
variable. The enlarged Lagrange function is: 

),(),()( yxhuxgxfL TT βα ++=         (18) 
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where βα ,  are the Lagrange multiplies respectively 
corresponding equality and inequality constraints. 
The Kuhn-Tacker conditions are as: 

0=++= x
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x
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0),( =yxg                               (21) 
0),( =yxhTβ                             (22) 

0),( ≤yxh                               (23) 
The scale of reactive power optimization problem is 
smaller while the line current is considered as the 
state variable compared with the case that line current 
and node voltage are as state variable, there are: 

RIf x 2=                                (24) 
where R  is diagonal matrix with the line resistance 
elements; I  is the line current vector; and: 

0=yf                                    (25) 
To linearize the formulas (12) and (13), it can be 
obtained:  

Y
WV

I
LJ
NH

S
E

∆⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
∆
∆

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
∆
∆ 0

        (26) 

where, E∆  is the line voltage error vector; S∆  is 
nodal injected power error vector; I∆  is the line 
current error vector; V∆  is the node voltage error 
vector; Y∆  is the control variable error vector; H  is 
block diagonal matrix with dimensions 2L×2L as 
following form: 
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(27) 
N  is the node-line incidence matrix with dimensions 
2L×2N as following form: 
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J  is a matrix that structure is same with the 
node-line incidence matrix with dimensions 2 N×2 L 
as following form: 
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L  is a diagonal matrix with dimensions 2N×2N as 
following form: 
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(30) 
W  is a block diagonal matrix with dimension 2N×N 

and its elements are as [ ]T10 . It can be seen from 
formula (26): 

VNIHE ∆+∆=∆                        (31) 
YWVLIJS ∆+∆+∆=∆                   (32) 

If 0=∆S , the )(1 YWIJLV ∆+∆−=∆ −  is 
obtained and introduced in formula (29), the line 
current corrective equation is: 

YWNLIJNLHE ∆−∆−=∆ −− 11 )(           (33) 
where JNLHg x

1−−=  is the Jacob matrix for line 

current analysis; the WNLg y
1−−=  with 

dimensions 2L×N. 
 
 

5   Calculation 
The Newton and grads method can be used to solve 
the Kuhn-Tacker conditions expressed by formulas 
(18)~(22). The grads method is used in this paper due 
to explain the efficiency of proposed arithmetic. The 
processes are as: 

1) To set 0=k  and give the initial value of 
control variable vector ky ; 

2) To calculate power flow according to formula 
(21); 

3) To adjust that node voltage is whether or not 
violated, the penitentiary multiplier kβ  must be 
determine if yes; otherwise to continue; 

4) To perform coefficient matrixes and calculate 
Lagrange multiplier kα  according to formula (19); 

5) To set k
y

k gy α=∆ (because of that yy hf ,  
are equal to 0) and determine the corresponding 
control variable error vector, the iterations are ended 
if enough smaller; otherwise to correct the control 
variable: 

kkkk ySyy ∆+=+1                      (34) 
where the kS  is iteration step, which can be 
determine by one-dimensional searching technology. 
It is to adjust the control variables is whether or not 
violated by formula (14), the 0=∆ k

iy  if 
corresponding control variable is violated at node i , 
then to set 1+= kk  and turn to step 2); 
The following points must be explained in above 
processes: 

1) The node voltage analysis method is still used 
to calculate power flow in step 2) above, then the line 
current can be obtained according to formula (12) 
and the matrixes LJNH ,,,  also are get. The 
network states are either obtained by combining the 
formula (11) with (12), but the scale of problem is 
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enlarged and works are increased; 
2) The penitentiary multiplier kβ  can be solved 

by probe method and interior point method, there is 
not explained in detail; 

3) The calculation of xh  must be regarded due 
to the node voltage is just related in formula (13). 
While the control variable error is ignored, it can be 
seen from formula (33) that is as:  

IJLV ∆−=∆ −1                          (35) 
viz.: 

JLIVhx
1/ −−=∆∆=                   (36) 

The matrixes yxx ggh ,,  can be expediently 
obtained because of the block diagonal form in 
matrix L . 

 
 

6   Case study 
The case study is made at IEEE-30 system by using 
grads method due to indicate the efficiency of 
proposed in this paper. The calculating results are 
listed in table 1 with the node data and table 2 with 
the line data. 
 

Tab.1 The Results in Nodes 
Node 
 No. 

Magnitude of  
Node Voltage 

Angle of  
Node Voltage 

1 1.0325 -4.69514  
2 1.0913 -6.2897  
3 1.0883 -7.96668  
4 1.02742 -11.4393  
5 1.01806 -12.6595  
6 1.02923 -11.8209  
7 1.0058 -8.98669  
8 1.00828 -8.04644  
9 1.023 -6.47197  
10 1.05301 -10.0464  
11 1.05719 -9.76528  
12 1.04303 -10.8103  
13 1.04622 -10.7799  
14 1.04164 -10.9733  
15 1.05318 -10.4868  
16 1.04755 -10.8221  
17 1.0636 -8.13097  
18 1.05184 -11.2833  
19 1.05604 -10.116  
20 1.02008 -6.90728  
21 1.04854 -10.6507  
22 1.0338 -2.73349  
23 1.02776 -5.62431  
24 1.06526 -9.13676  
25 1.05059 -10.2218  
26 1.05442 -10.5013  
27 1.04465 -11.0428  
28 1.06307 -9.97491  
29 1.02309 -6.49742  
30 1.05 0  

 
 

Tab.2 The Results in Lines 
Line  
No. 

Magnitude of 
Line Current 

1 2.96097 
2 1.03308 
3 0.0757143 
4 0.24069 
5 0.469304 
6 0.36855 
7 1.83489 
8 1.147 
9 1.27351 
10 1.08376 
11 0.147711 
12 0.143271 
13 0.304861 
14 0.564292 
15 0.0563208 
16 0.608776 
17 0.0770484 
18 0.0824186 
20 0.0414895 
19 0.479188 
26 0.919257 
21 0.0757026 
22 0.133785 
23 0.130145 
24 0.450157 
25 0.123161 
27 0.0395628 
28 0.601978 
29 3.80608 
30 0.113142 
31 0.455993 
32 0.0642532 
33 0.0309831 
34 0.311054 
35 0.0233962 
36 0.0106204 
37 0.0766863 
38 0.0827966 
39 0.180353 
40 0.242551 
41 1.13922 

 
     The 5 iterations are needed to solve the reactive 
power optimization problem by grads method based 
on the line current variable, the network losses are 
listed in table 3. In table 4, the calculating results by 
different methods are showed. The calculating effects 
with the line current variable are better than the case 
with node voltage variable by grads method and 
approaches to the calculating results by Newton 
method with node voltage variable. It is explained 
that efficiency of the proposed method in this paper is 
high due to the information in xf  appeared in 
formula (19) is much more. 
 
 

Tab.3 The Network Losses 
Iter. 1 2 3 4 5 
Net. 
Los. 0.0710068 0.0707587 0.070587 0.0704896 0.0704643 

 
 
 
 

Tab.4 Comparing with Other Arithmetic 
Methods Iterations Network Compensatory Compensatory 
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Losses Capacity at 
Node 10 

Capacity at 
Node 24 

1 5 0.0704643 0.22275 0.145011 
2 6 0.0704835 0.198811 0.105563 
3 5 0.0704647 0.216341 0.132754 

 
     In table 4, the 1 denotes ‘Grads Method with Line 
Current Variable’ and the 2 denotes ‘Grads Method 
with Node Voltage Variable’ while the 3 ‘Newton 
Method with Node Voltage Variable’. 

 
 

7   Conclusion 
The objective function is directly expressed as the 
network losses while the line current is considered as 
state variable by describing the reactive power 
optimization problem to optimal power flow form. It 
is indicated that calculating efficiency of the 
proposed method in this paper is quoteworthy seen 
from the calculating results due to the variety in the 
objective function value is sensitive while the state 
variable changes. 
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