
A Fuzzy Object Relational Approach to Flexible Real Estate Trade

CARLOS D. BARRANCO, JESÚS R. CAMPAÑA, JUAN C. CUBERO, JUAN M. MEDINA
Dept. Computer Science and Artificial Intelligence

University of Granada
Periodista Daniel Saucedo Aranda, s/n, 18071, Granada

SPAIN

Abstract: - The object-relational database management systems (ORDBMS) appear due to the common
acceptance of the object oriented paradigm and its integration with relational databases, combining the powerful
modelling capabilities of the object oriented model and the robustness of relational model. ORDBMSs user
defined types allow to create a framework for fuzzy information handling. This paper proposes to use that fuzzy
framework to improve computer assisted search-offering processes, focusing on the real estate trading area.

Key-Words: - Object-Relational, Fuzzy Sets, Fuzzy Databases, Fuzzy Objects, Offer Search, Real Estate Search

1 Introduction
The object oriented (OO) paradigm is becoming the
prevalent one in the application development field.
This success is due to the high expressive capabilities
of object models, and the rapid application develop-
ment capabilities of OO languages, because of the
high code reusability level achieved by the OO
paradigm key concepts: inheritance, encapsulation
and polymorphism.

As a result of this success, database models are
changing to include OO concepts in order to take
advantage of the OO paradigm benefits mentioned
before.

Nowadays, commercial database management
systems (DBMS) are moving to the object-relational
paradigm because of the advantages offered to users.
Object-Relational Databases (ORDB) combine the
powerful modelling capabilities of an OO data model
and the proved robustness of the relational model.
ORDBMSs integrate much better with OO software,
offering to OO applications direct object persistence
functionality.

A key feature of ORDBMSs is extensibility.
Using OO concepts, ORDBMS functionality may
be extended by means of User DataTypes (UDT),
which allow transparent integration of user defined
data structures and data processing, all of this
encapsulated as a unit.

In the field of imperfect information management,
fuzzy object-relational database (FORDB) models are
appearing [1, 2].

FORDBs benefit from the advantages of ORDBs
while they enrich this paradigm providing uncertain
information management capabilities.

During the last years, several works led to a
model [3, 4, 5] and an implementation [6, 7] of a
Fuzzy Relational Database Management System, a

later proposal [8] aims to represent fuzzy information
in an object-oriented data model, and recent work [2]
point to a model and implementation of a FORDBMS
using the object features of current ORDBMSs to
extend them by means of UDTs, which encapsulate
fuzzy information representation and processing.

The transparent integration of OO applications
with ORDBMSs and their new fuzzy data manage-
ment extensions, combine to create enhanced data
management capabilities for commercial applications,
allowing them to store imprecise information and
query data using flexible conditions easily.

Our proposal is to use these new data manage-
ment capabilities to improve the user-application
interaction in offer-searching systems, allowing sell-
ers to express their offers as imprecisely as they need,
and buyers to express their queries as flexibly as they
want. This way of expressing queries and offers,
makes the interaction with the systems more natural,
emulating the flexible process applied by sales agent
to match offers and demands.

Section 2 introduces briefly a proposed FORDB
obtained from an ORDB extension. Section 3 exposes
an example of a trading area which requires fuzzy
information and flexible query in its typical way of
work, real estate trading area. Section 4 focuses on an
implementation example of a query comprising flex-
ible conditions. Finally, Section 5 highlights the con-
cluding remarks.

2 Fuzzy Object-Relational Database
An ORDBMS can be extended using UDTs to
manage virtually any kind of complex data, like
multimedia or spatial data. Extending an ORDBMS
with fuzzy data management UDTs, produces a

Figure 1: Extended Database Types

FORDBMS which combines the power of fuzzy sets,
and the object oriented and relational paradigms.

This extension provides advantages over existing
FRDBMSs, such as tight level of integration with the
underlying DBMS, hiding implementation aspects of
fuzzy types, which allow the user to be aware only of
semantics and functionality, an extensible schema
allowing future extensions, and efficient implementa-
tion, avoiding the use of software wrappers to allow
fuzzy data management.

2.1 DataType Hierarchy for Fuzzy Data

Management
In order to provide complex fuzzy data management
capabilities for the underlying ORDBMS, new UDTs
have been defined using host DBMS object-oriented
features, organized in a hierarchy and extending the
basic DBMS datatypes. These new datatypes allow
the DBMS user to deal with several kinds of im-
precise data. Figure 1 shows the database datatype
hierarchy integrating classical and fuzzy types.

The types in the mentioned hierarchy are the
following:

• FuzzyDataTypes (FDT) are an abstraction of all

supported fuzzy data. This type declares com-
mon general methods to be implemented in the
subtypes, for instance the FEQ (fuzzy equal to)
method, which extends the concept of classical
equality to the fuzzy framework, returning a
value in the interval [0,1] representing the fuzzy
resemblance degree between two fuzzy values.

• AtomicFuzzyTypes (AFT) gather all common

behavior for the fuzzy extensions of scalar and
numerical data.

• OrderedAFTs (OAFT) give structure and
behavior to atomic fuzzy data represented by a
possibility distribution defined on an ordered
domain (numerical fuzzy data). As this type has
an associated ordered domain which defines an
order relation between the domain elements, the
type can define an extension of the classical
relational operators, for instance fuzzy equal to
(FEQ), fuzzy greater than (FGT), fuzzy greater
than or equal to (FGEQ), etcetera.

• NonOrderedAFTs (NOAFT) provide structure

and behavior to data defined on a scalar domain
without an order relation. The user defines a
fuzzy nearness relation between domain's mem-
bers, which is used to compute the resemblance
degree between two members using the FEQ
operator.

• FuzzyCollections (FC) extend the classical col-

lection concept to a fuzzy one, in which the
collection elements have a membership degree
between [0,1]. Fuzziness affects only elements’
membership, it does not affect collection ele-
ments, therefore collection elements’ type can
be fuzzy or crisp. FC type provides the required
structure and behavior to manage the collection,
like methods for adding, removing or getting the
membership of collection elements.

• DisjunctiveFuzzyCollections (DFC) model

fuzzy collections with disjunctive semantics,
which determines the fuzzy equality method
(FEQ) implementation.

• ConjunctiveFuzzyCollections (CFC) are the
equivalent to DFC but with conjunctive
semantics.

• FuzzyObjects (FO) provide a general framework

for dealing with complex fuzzy objects defined
by users. Every user defined fuzzy object type is
a subtype of FO, inheriting common methods
defined in FO for fuzzy object management.
These methods are, one to weigh the importance
degree of each object attribute, which is used by
the fuzzy objects comparison algorithm, and a
method encapsulating a general implementation
of the FEQ comparator for fuzzy objects.

2.2 Fuzzy Data Comparison
In order to compare fuzzy data of the same fuzzy
datatype, every fuzzy type, in the described
hierarchy, has its own particular implementation of
the FEQ method described earlier, adapted to
calculate the resemblance degree between two fuzzy
type elements.

For AFT subtypes the comparison is performed
using user-defined resemblance relations, when
dealing with NOAFT type, and by known resem-
blance computation method for possibility distri-
butions on order domains, in case of OAFT type.

When dealing with FCs we have to take into
account the possible recursive comparison process
(because the collection elements can be any kind of
fuzzy data) and the collection semantics, which
determines the comparison method employed.
Disjunctive semantics collections can employ a
generalized resemblance method like (בFEQΩ,⊗(o1,o2)
[9]).

Complex FOs need a similar treatment. They can
be composed of complex fuzzy data, therefore the
comparison method increases its complexity perform-
ing the following tasks:

1. Compute the resemblance in basic domains

(i.e. AFT attributes and collection elements).
2. Compute the resemblance between fuzzy

collections of imprecise objects, when the
attributes of a FO, or elements of a FC, are
complex fuzzy types.

3. Aggregate the resemblance information col-
lected in the previous steps, referring to the
resemblance degree between objects' attri-
butes, in order to obtain a resemblance degree
for the compared objects.

Cycles in the resemblance degree calculation
process may happen, taking into account that FOs can
reference themselves creating a cycle. Therefore, the
method needs a guard mechanism to avoid cycles.

A suitable resemblance degree method is
FEQ(C,o1,o2,Ωvisited,Ωaprox), described in detail in [2].
The method compares, peer to peer, attributes' values,
obtaining a resemblance degree for each object
attribute. For each attribute, the comparison process
can be recursive and cycles may appear, but the
method manages well these situations. When a
resemblance value has been calculated for each
attribute, an object resemblance value is calculated
aggregating these values using the aggregation
operator VQ [9]. Figure 2 summarizes the described
process.

a1

a2

a3

an

...

v1

v2

v3

vn

...

o1

a1

a2

a3

an

...

v1

v2

v3

vn

...

o2

Sa1(o1,o2)

Sa3(o1,o2)

Sa2(o1,o2)

San(o1,o2)

Sa4(o1,o2)

VQ S(o1,o2)

...

Figure 2: Complex object comparison

3 The Real Estate Searching Problem
The real estate management process is chosen as the
object of our research, because of the suitability of
real estate attributes to fuzzy treatment, due to the
high level of imprecision in their values.

In the real estate searching process a set of
characteristics is specified for the real estate to have,
but usually these characteristics are not fully defined.
A customer has a set of preferences, a general idea of
what is being looked for, that idea not necessarily
should fit to a crisp value, it might be most accurately
represented by a value range, an approximate value or
even an upper or lower bound. The imprecise
representation of these characteristics may allow to
obtain results that verify our preferences on different
degrees.

Generally the imprecision is managed by sales
agents who can easily process and handle fuzzy
information. The real estate management process
occurs between two humans, the customer and the

sales agent, both of them can handle fuzzy
information naturally.

The problem arises when one of these entities, the
sales agent in our case, capable of handling fuzzy
information, is replaced by an automatic system. It is
necessary to provide the system with methods to
handle fuzzy information in the same way the sales
agent was doing before. So, a way to represent fuzzy
information about real estates is proposed, in order to
be able to design a system that can mimic the sales
agent behavior, to interact fluidly with a customer.

Which attributes are suitable for fuzzy handling
will be examined, and also, the way to represent them
in the framework defined in previous sections.

3.1 Real Estate Fuzzy Attributes
There are some real estate attributes which can be
modelled using the fuzzy types described in the
previous section. From a wide variety of attributes,
most representative and those which can illustrate
better the example have been selected. The attributes
selected are the ones shown in Table 1.

Table 1 : Real estate attributes and
fuzzy types associated

Type Attributes

Ordered AFT Price, Area, Rooms,
Floors, Age

Non Ordered AFT
Kind, Orientation,

Illumination, Views,
Conservation

Conjunctive Fuzzy
Collections Additional features

OAFTs are used to store imprecise data,
represented as trapezoidal possibility distributions.
For instance, attribute Price stores the real estate
price range: “between €100,000 and €500,000” or
“up to €150,000”. The same goes for Area and Age.
However, for attributes Room and Floors a scalar
representation is used, also allowed by this data type,
because these attributes are easily measurable and the
imprecision introduced is minimal, although if it is
necessary an imprecise representation can be used.

NOAFTs are defined on a scalar domain, with an
associated proximity relation defined between
elements of that domain. For instance, attribute Kind
has scalar domain “Apartment”, “Flat”, “House”,
“Duplex” and “Attic”. The associated proximity
relation for these values of the scalar domain on
attribute Kind is shown in Table 2. Each attribute
Orientation, Illumination, Views and Conservation

has his own scalar domain and a proximity relation
defined on it.

Table 2 : Proximity relation defined on the
scalar domain of attribute Kind

Flat House Duplex Attic Kind
0.75 0.3 0.2 0.75 Apartment
 0.3 0.3 0.75 Flat
 0.75 0.1 House
 0.1 Duplex

CFCs are used to store any real estate’s additional
features, like “garden”, “tennis court”, “fireplace”,
“swimming-pool”, “basement”, “backyard”, etcetera.
Each additional feature is added to the CFC with a
membership degree equal to 1, and during the search
every pair of additional features sets is compared in
order to obtain a resemblance degree.

More details and description of an application
using this approach can be seen in [10, 11].

4 Real Estate Search
The following example shows a set of real estates and
defines a query with fuzzy terms over that set.

Query and real estate attribute definition are
imprecise due to the acceptance of linguistic labels
and numeric values.

In the example, a subset of the attributes pre-
sented is used, because the procedure is the same for
attributes with equal data type and reducing the
amount of them simplifies the example and eases its
comprehension. Query definition and a set of real
estate FOs can be seen in Fig. 3.

Query

Kind: Flat
Price: > €100,000
Area: 100 ± 15 m2

Rooms: 3-4

?

Real Estate 1

Kind: Flat
Price: €155,000

Rooms: 4

Real Estate 2

Kind: Apartment
Price: €120,000
Area: 100 m2

Rooms: 3

Real Estate 3

Kind: Attic
Price: €170,000

Rooms: 4

Real Estate 4

Kind: House
Price: €166,000
Area: 122 m2

Rooms: 2

Figure 3 : Real Estate Search Example

To do a search over a set of FOs that represent
real estates, a query is built showing the conditions to
verify each attribute.

Representing queries as attributes of a loosely
defined real estate FO allows to characterize a query
as the real estate FO to look for. If a query is
represented as a real estate FO, the searching process
is reduced to a comparison between fuzzy objects,
obtaining the resemblance degree between the query
FO and the FOs modelling real estates present in the
database.

Comparison between FOs is performed com-
puting the resemblance degree between attributes of
FOs, then, resemblance degrees are aggregated using
the aggregation operator VQ.

4.1 Data Definition and Querying
An implementation example in SQL is accomplished
according to the schemata defined in [2] and the
extended type hierarchy depicted in Fig. 1, completed
with the methods and constructors needed to fulfill
the example.

Static method extends(typeName) is used by
AFT type for new subtype creation. When invoked on
a type, creates a subtype with the name <typeName>.

Method nearnessDef(memberList,degreeList)
is needed by NOAFT type. This method defines and
stores the nearness relation for the domain members
of the type.

A real estate is defined as follows:

--Creation of OAFT subtypes
OAFT.extends('Price');
OAFT.extends('Area');
OAFT.extends('Rooms');

--Creation of NOAFT subtype Kind
NOAFT.extends('Kind');

--Definition of the nearness relation for Kind
--Domain
--The first parameter is comprised of linguistic
--labels defined in the Domain.
--The second parameter is a nearness degree list.
--First we put on the list the nearness degrees
--between 'apartment' an the rest of labels, then
--that of 'flat' with the rest of label except
--for 'apartment' (already defined), and so on.

Kind.nearnessDef(('apartment','flat','house','dup
lex','attic'),(0.75,0.3,0.2,0.75,0.3,0.3,0.75,0.7
5,0.1,0.1))

--FO subtype RealEstate
create type RealEstate under FO(RKind Kind,
RPrice Price, RArea Area, RRooms Rooms);

All attributes have the same importance in this

example but it can be changed by means of method
setFieldImportance(attribImportanceList)
defined for FO types.

Once all types are defined, a table RealEstate is
created to store the example data.

create table RealEstates_tab of RealEstate;

RealEstate instances are inserted into the table,
using the defined constructors. The DML statements
are the following:

-- The OAFT type constructors used are defined as
-- follows:
--
-- OAFT(value) creates a crisp value.
-- OAFT(a,b) creates an interval value [a,b].
-- OAFT(l,value,u) creates an approximate value
-- with ‘u’ and ‘l’ as upper and lower bounds.
-- OAFT(a,b,c,d) creates a trapezoidal
-- possibility distribution value.

insert into RealEstates_tab values (
RealEstate(

Kind('flat'), Price(155000),
 Area(75,90,105), Rooms(4)
)
);

insert into RealEstates_tab values (
RealEstate(

Kind('apartment'), Price(120000),
Area(100), Rooms(3)

)
);

insert into RealEstates_tab values (
RealEstate(

Kind('attic'), Price(170000),
 Area(70,80,90), Rooms(4)
)
);

insert into RealEstates_tab values (
RealEstate(

Kind('house'), Price(166000),
 Area(122), Rooms(2)
)
);

Now real estate instances are stored and the

database is ready to accept queries. A query is built to
search the most similar real estate to that expressed,
as follows:

-- ‘binary_double_infinity’ is the literal which
-- represents positive infinity.

SELECT (RealEstate(Kind('flat'),
 Price(100000, binary_double_infinity),
 Area(85,100,115), Rooms(3,4))
).feq(re1)
FROM RealEstate_tab re1;

Calculating the resemblance between query object

and real estate instances involves the aggregation of
the resemblance degree between each pair of attribute
values, using aggregator VQ detailed in [9].

For instance, resemblance degree between the
query and Real Estate 1, using γQ = 0.2, µD(x) = 1,
minimum as t-norm, maximum as t-conorm, and
possibility measures for comparing atomic fuzzy
values.

736.067.08.012.0
)}0,1max(),0,67.0max(),0,1max(),0,1min{max()2.01(

)}1,1min(),67.0,1min(),1,1min(),1,1max{min(2.0)/(

=∗+∗
=−+

=DAVQ

Table 3 shows resemblance degrees computed for

the query. It is possible to set up a threshold to avoid
real estates with low resemblance degree to appear in
the query result.

Table 3 : Resemblance degrees calculated

Real Estate Resemblance Degree (γQ=0.2)
RE 1 VQ[1, 1, 0.67, 1] = 0.736
RE 2 VQ[0.75, 1, 1, 1] = 0.8
RE 3 VQ[0.75, 1, 0.2, 1] = 0.68
RE 4 VQ[0.3, 1, 0.12, 0] = 0.296

The resemblance degrees obtained indicate that
Real Estate 2 is the best suited to the query although
it is not a perfect match.

In a crisp system this example would not show
results, because none of the database real estates fits
the query with resemblance degree 1. Therefore an
improvement in the searching process is experienced,
if there not exists a real estate with the characteristics
specified in the query, another instance with the most
similar characteristics can be obtained.

This makes the fuzzy real estate search a very
useful tool for customers and sales agents alike.

5 Concluding Remarks and Future

Works
In this paper we have presented an object oriented
representation for real estates as fuzzy objects, based
on previous works. Also, benefits of the object rela-
tional approach applied to fuzzy data management, a
method to compare real estate FOs based on previous
research, and a set of real estate attributes and the
fuzzy data which describe them have been exposed.

Real estate search has been simplified and im-
proved adding fuzzy object data management capa-
bilities and depicting it as a comparison of fuzzy
objects.

Future works will address the calculus of resem-
blance degrees based on user preferences, automatic
definition of linguistic labels based on context, and
fuzzy treatment of real estate location.

Acknowledgments:
This work has been partially supported by the
Spanish “Ministerio de Ciencia y Tecnología”
(MCYT) under grant TIC2002-00480.

References:
[1] J.M. Medina, J. Galindo, F. Berzal, J.M. Serrano,

Using Object Relational Features to Build a Fuzzy
Database Server, VIII Intl. Conf. of information
processing and management of uncertainty in
knowledge-based systems (IPMU 2002), pp 307-
314. July 1-5 2002. Annecy (France).

[2] N. Marín, J.M. Medina, O. Pons, M.A. Vila,
Fuzzy object Management in an Object-Relational
Framework, X Intl. Conf. of information
processing and management of uncertainty in
knowledge-based systems (IPMU 2004), pp 1767-
1774. July 4-9 2004. Perugia (Italy).

[3] H. Prade, C. Testemale, Generalizing Database
Relational Algebra for the Treatment of
Incomplete or Uncertain Information and Vague
Queries, Information Sciences Vol. 34, 1984, pp.
115-143.

[4] M. Zemankova-Leech, A. Kandel, Fuzzy
Relational Databases -- A Key to Expert Systems,
Köln, Germany, TÜV Rheinland, 1984.

[5] S. Fukami, M. Umano, M. Muzimoto, H. Tanaka,
Fuzzy Database Retrieval and Manipulation
Language, IEICE Technical Reports, Vol. 78, N.
233, pp. 65--72, AL-78-85 (Automata and
Language) 1979.

[6] M. Umano, Freedom-O: A Fuzzy Database
System, Fuzzy Information and Decision
Processes. Gupta-Sanchez edit. North-Holand
Pub. Comp. 1982.

[7] J. Galindo, J.M. Medina, O. Pons, J.C. Cubero, A
Server for Fuzzy SQL Queries, Flexible Query
Answering Systems, eds. T. Andreasen, H.
Christiansen and H.L. Larsen, Lecture Notes in
Artificial Intelligence (LNAI) 1495, pp. 164--174.
Ed. Springer, 1998.

[8] R. D. Caluwe, Fuzzy and Uncertain Object-
Oriented Databases: Concepts and Models,
Advances in Fuzzy Systems-Applications and
Theory. Vol 13. World Scientific, 1997.

[9] N. Marín, J.M. Medina, O. Pons, D. Sánchez, and
M. A. Vila, Complex object comparison in a
fuzzy context, Information and Software
Technology, 45, 431-444, 2003.

[10] C.D. Barranco, J.R. Campaña, J.M. Medina O.
Pons, ImmoSoftWeb: a Web Based Fuzzy
Application for Real Estate Management,
Advances in Web Intelligences, LNAI 3034, pp.
196-206, J. Favela et al. (Eds.) 2004.

[11] ImmoSoftWeb: http://idbis.ugr.es/immosoftweb

	Kind
	Apartment
	Real Estate
	5 Concluding Remarks and Future Works

