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Abstract: - Sequential pattern mining is a heavily researched area in the field of data mining with wide variety of 

applications. The task of discovering frequent sequences is challenging, because the algorithm needs to process a 

combinatorially explosive number of possible sequences. Most of the methods dealing with the sequential pattern 

mining problem are based on the approach of the traditional task of itemset mining, because the former can be 

interpreted as the generalization of the latter. Several algorithms use a level-wise “candidate generate and test” 

approach, while others use projected databases to discover the frequent sequences. In this paper a classification of the 

well-known sequence mining algorithm is presented. Because each algorithm has its own advantages and drawbacks 
regarding the execution time and the memory requirements, and the exact aim of the algorithms differs as well, thus an 

exact ranking of the methods is omitted. A basic level-wise algorithm, the GSP is described in detail. Because the 

level-wise algorithms need less memory in general than the projection-based ones, an efficient implementation of the 
GSP algorithm is also suggested. Two novel methods, the Bitmap-based GSP (BGSP) and the SM-Tree (State 

Machine-Tree) algorithms are presented as an enhancement of the GSP-based sequential pattern mining approach. 
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1   Introduction 
The aim of sequential pattern mining is to discover 

frequent recurring subsequences in a large sequence 

database as patterns. It is an important data mining task 

with broad applications like Web usage analysis, DNA 
sequences and customer sequences and many others.  

The problem of sequence mining can be interpreted as 

a generalization of the itemset mining, which was first 

introduced in [1]. Consider a database of a supermarket 

which stores the transactions of the customers. The 

transaction is defined as the set of items bought by a 

customer at a time. If the customers are not distinguished 

in the database, i.e. no data is stored about the 

customers; the task is to find frequent recurring itemsets 

in the transactions. This is the itemset mining problem 
commonly known as market basket analysis. However, if 

the database differentiates the customers from each 

other, for example by collecting the customer’s 
information by using a card for frequent buyer discounts, 

then a sequence of bought items can be created for each 

customer. In this way frequent recurring events, i.e. 

subsequences can be discovered for example for 

advertising purpose. 

The problem of sequence pattern mining is more 

complex than the problem of frequent itemset 

discovering because of the following reason. While in 

frequent itemset mining “only” the combinations of the 
items has to be generated, in case of sequence mining the 

variations of the combinations of the items has to be 

generated. 

There are several algorithms dealing with the problem 

of sequential pattern mining, and they differ in several 

ways. Most of them discover all the frequent patterns in 

the sequence database, while others discover only the 

frequent closed patterns or the maximal frequent 
patterns. Another aspect of differentiating the algorithms 

could be the representation of the transactions. All 

approaches have their advantages and disadvantages, the 

different algorithms suit different kind of problem, thus a 

classification of them can be useful. In this paper the 

different aspects of classifying the sequence pattern 

mining algorithms is described. The main features of the 

best-known algorithms are outlined. A basic level-wise 

algorithm, the GSP is introduced in detail. It is an 
important method, because it can handle not only the 

simple sequence mining problem, but also the problem 

of defining time constraints, sliding time windows and 
taxonomies in sequential patterns as well.  

The organization of the paper is as follows. Section 2 

introduces the problem of sequential pattern mining 
including the problem of handling time constraints. In 

Section 3 the aspects of classification are discussed and a 

classification of the best known algorithm based on the 

aspects is shown. Section 4 explains the GSP algorithm, 

a basic level-wise, “candidate generate and test” 

algorithm in detail. In Section 5 two novel level-wise 

methods are suggested, which solve the frequent 

sequence mining problem efficiently. Conclusion can be 

found in Section 6. 
 



2   Problem Statement 
The problem of sequential pattern mining was first 
introduced by Agrawal and Srikant in [2]. Let D denote 

the set of transactions. Each transaction consist a 

customer identifier (CustID), a transaction time (time) 
and the set of items, called itemset. The ordering of the 

items in an itemset is irrelevant, but in order to handle 

the transactions easier, and without loss of generality, it 
is assumed that they are in lexicographical order. A 

sequence is defined as an ordered list of itemsets.  

An itemset is denoted with i=(i1, i2, …, im) where ij is 

an item. A sequence is denoted with s=<s1, s2, …,sn>, 

where si is an itemset. An item can occur in an itemset 

only once while in a sequence multiple times. A 

sequence <a1, a2, …,an> is contained by another 

sequence <b1, b2, …, bm> if there exists integers i1< i2< 

…< in such that a1⊆bi1, a2⊆bi2, …, an⊆bin.  
The length of a sequence is defined in two different 

ways in the literature. In [2] the length of a sequence is 

defined as the number of itemsets contained by the 

sequence. [3] and the later results of the authors interpret 

the definition of the length of a sequence as the number 
of items in the whole sequence. Because the latter 

definition is more current, in this paper the second 

definition is used. A customer sequence is a list of 
itemsets bought by the given customer. In this case the 

itemsets are ordered regarding their transaction times, 

and the identifier of the sequence transaction (TID) is the 
customer identifier. The support of a sequence s 

(denoted as sup(s)) is the number of customer 

transactions which contain the sequence s.  

Beyond the basic problem of sequential pattern mining 

several constraints can be added to make the results 

more adequate for the user. This can be for example a 
sliding window. When using sliding window the 

transactions are grouped together such that those 

transactions belong to the same group whose transaction 
time is between a user-given intervals. This is practically 

a window which slides through the transactions. When 

defining time constraints the user can give a maximum 

gap and a minimum gap between the transactions 

belonging to the same group. The purpose of the 

minimum gap is to not to distinguish those transactions 

which are too close to each other, and defining the 
maximum gap means that the transactions which are far 

from each other are irrelevant. For example for a book 

store it is irrelevant, whether a customer buys two books 
in three years. It has more relevance when the time 

interval between the two events is less than a year.  

When given a user-defined minimum support threshold 
(minsup) the task of sequential pattern mining is to 

discover those sequences which are contained by at least 

minsup number of sequences in the database. These 

sequences are called frequent sequences. If the size of 

the sequence is k, it is denoted as k-sequence. 

3   Classification of the algorithms 
Like in frequent itemset mining the algorithms for the 
problem of frequent sequence mining differs in many 

ways. When comparing the performance of two 

algorithms it is important that they should achieve about 
the same task. 

In this paper the following aspects are considered to be 

relevant when classifying frequent sequence discovering 
algorithms: 

• The type of the discovered frequent sequences. 

• The method of the search space traversal. 

• The number of disk access, i.e. which basic 

frequent itemset mining algorithm serves as a 

basis for the sequence mining method. 

• The representation of the transactions, i.e. how 

the support of the transaction can be counted.  

 

3.1 Type of the frequent sequences 
It is an important aspect that frequent patterns are 

searched for by the algorithm. Both the execution time 
and the memory requirement depend strongly on the 

type of the discovered frequent sequences. The reason 

for that is that the number of the different types of 
frequent sequences differs significantly. 

The most general approach is to discover all the 

sequences whose support is over the minimum support 

threshold. The following algorithms discover all the 

frequent sequences: AprioriAll [2], GSP [3], SPIRIT [4], 

SPADE [5], FreeSpan [6], PrefixSapn [7] and SPAM 

[8].  

Another approach is to discover only the maximal 

frequent sequences. A sequence s is maximal if s is not 
contained in any other sequence. The maximal frequent 

sequences are discovered by the following algorithms: 

AprioriSome [2], DynamicSome[2] and DFS-MINE [9]. 
The benefit of mining only the maximal sequences is 

that in this case the search space of the mining algorithm 

is reduced significantly, however the drawback of it, that 

the support values of the non-maximal sequences are not 

present. This approach is useful when the application 

needs only the maximal sequences. 

The definition of the closed sequence is similar to that 

of the closed itemset. The sequence s is a frequent closed 

sequence, if s is frequent, and there exists no 
supersequence q of s, such that the support of q is the 

same as the support of s. The benefit of discovering only 

the frequent closed sequences is that all the frequent 

sequences and their support values can be derived from 

them, and it reduces the search space significantly, 

however not as much as the maximal sequence 

discovering methods. CloSpan [10] and BIDE [11] are 

algorithms which discover the frequent closed 

sequences.  

 



3.2 Search space traversal 
When traversing the search space the algorithms use two 

types of approaches. The first is the breadth-first search 

traversal, BFS for short, and the second is the depth-first 

search traversal, DFS for short. The DFS has an elegant 
recursive implementation, while BFS needs more 

iteration. BFS is used by the AprioriAll, AprioriSome, 

DynamicSome and GSP algorithms. The DFS traversal 
is used by FreeSpan, PrefixSpan, SPAM and DFS-

MINE. The SPADE algorithm offers a possibility to the 

user to choose between the two methods. 

 

3.3 Number of disk access 
Because of the high cost of the I/O process, it is an 

important issue how many times the algorithm has to 

access the database. In the frequent itemset mining area 
there exist basically two types of algorithms regarding 

the number of disk access. The first type incorporates the 

methods like the Apriori [10] algorithm, i.e. Apriori-like 
algorithms, which access the database at least as many 

times as the size of the longest itemset is. In sequence 

mining there exist several algorithms whose approach is 

based on the principles of the Apriori algorithm, like 

AprioriAll, AprioriSome, DynamicSome, GSP, SPADE 

and SPIRIT. The other approach of the itemset mining is 

the two-phase mining like the FP-growth algorithm [12]. 

The FP-growth algorithm scans the database only twice, 

while a so-called FP-tree is created in the main memory. 
The process is then executed recursively by creating 

further conditional FP-trees in the memory. The idea of 

the FreeSpan and PrefixSpan algorithms is based on the 
principle of the FP-growth algorithm, thus they access 

the database much less than the Apriori-like algorithms 

do. However, the memory requirements of the former 
algorithms are much huger than that of the latter. 

 

3.4 Transaction representation 
Two approaches are wide-spread in counting the support 

of the transactions, the horizontal and the vertical 
representation. Both of the two representations can be 

implemented both as lists and as bitmaps. Thus four 

types of representation exist. The existing sequential 
pattern mining algorithms use lists in case of horizontal 

representation and in case of vertical representation both 

list and bitmaps. 

The horizontal transaction representation means that 

for each transaction the itemsets are listed which are 

contained by the transaction. By vertical representation 

for each sequence there is a list of transaction identifiers 

which holds the given sequence. If N denotes the number 

of transactions in the database, then using a bitmap 
vertical representation means that for each sequence 

there exists a bit vector of length N. The ith item of the 

vector is set 1 if the transaction with the identifier i 
contains the given sequence, else it is set to 0. 

The benefit of the vertical representation is that the 

support counting of a candidate sequence can be 

achieved easily by intersecting the TID lists or vectors of 

two sequences. The drawback is, however, that the 
length of the list or the vector depends on the number of 

transactions, which can be very large.  

All of the algorithms mentioned so far use a horizontal 
representation except SPADE, which uses a linked list 

for the transaction identifiers, and SPAM, which uses a 

vertical bitmap representation. Table 1 shows the 
different features of the most commonly known frequent 

sequence mining algorithms regarding the aspects 

described so far. 

 
Table 1. Classification of the algorithms 
 

Algorithm BFS/ 

DFS 

All/ 

Max/ 

Closed 

Fundamental 

algorithm 

Transaction 

representa- 

tion 

AprioriAll [2]  BFS All Apriori Horizontal 

AprioriSomew [2] BFS Max Apriori horizontal 

DynamicSome [2] BFS Max Apriori horizontal 

GSP[3] BFS All Apriori horizontal 

SPIRIT [4] BFS All Apriori Horizontal 

SPADE [5] both All Apriori Vertical list 

FreeSpan [6] DFS All FP-growth Horizontal 

PrefixSpan [7] DFS All FP-growth Horizontal 

SPAM [8] DFS All Apriori Vertical  

bitmap 

DFS-MINE [9] DFS Max  Horizontal 

CloSpan [10] DFS Closed FP-growth Horizontal 

BIDE [11] DFS Closed –– Horizontal 

 

Regarding the features of the methods depicted in 

Table 1. The algorithms which discover all the frequent 
sequences can be categorized mainly into three classes 

which is depicted in Fig. 1.  
 

AprioriAll

GSP

SPIRIT

SPADE

SPAM

FreeSpan

PrefixSpan

HorizontalHorizontal Vertical

Apriori-based Projection-based

 
Fig. 1. Classification of the algorithms  

 

4   GSP algorithm 
The GSP (Generalized Sequential Patterns) is one of the 

first sequential pattern mining algorithms. Its idea is 
based on the Apriori frequent itemset mining algorithm, 

and uses the a-priori hypothesis, namely, a sequence can 

be only frequent, if all its subsequences are frequent as 
well. The GSP is a level-wise, “candidate generate and 

test” method. The GSP algorithm uses the length 

definition as the number of items contained by the 
transaction. 

The algorithm works as follows. During the first 

database scan the 1-sequences (practically the frequent 



items) are discovered. It is done by counting the support 

of each item in the database such that when processing a 

transaction a counter of a certain item is incremented 

only once, no matter how many times the transaction 
contains the given item. From the frequent one 

sequences 2-candidates are generated. There are two 

types of 2-candidates, namely, the candidates which are 
in the form <(x,y)>, where x and y are different frequent 

items, and x < y, and the candidates of the form 

<(x)(y)>, where x and y are arbitrary frequent items. 
After generating the candidates a further database scan 

follows, and the support of the candidates is counted.  

In general the rule for generating a candidate of size k 

is as follows. Let s1 and s2 be two sequences of size (k-

1). Let s1’ be a sequence derived from s1 such that the 

first item of the s1 is omitted. Let s2’ be a sequence 
derived from s2 such that the last item of it is omitted. If 

s1’ = s2’, then s1 and s2 are joined to cerate a sequence s3 
of size k. The resulting sequence s3 is generated as 
follows. The prefix of s3 is the sequence s1. The only 

question is how the last item of s2 is inserted to the end 

of the sequence. If the last item of s2 is a single item in 

the last itemset, then it is inserted as a new itemset at the 

end of s3. If there were other items in the same itemset 

before the last item of s2, then it is inserted at the end of 

the last itemset of s3. s3 becomes only a candidate if all 

its (k-1)-subsequences are also frequent, thus this has to 

be checked as well. For this reason all the (k-1) 

subsequences are generated from s3 by omitting each 
single item from the sequence. If all the resulting 

sequences are frequent, then s3 becomes a candidate. 

After generating the k-candidates, a database scan is 
executed and the support of each candidate is counted. 

To reduce the number of candidates to be checked when 

processing a transaction, a hash-tree is created whose 

leafs index the candidates. Using this hash-tree the 

process of counting the support of the candidate is 

enhanced. The GSP algorithm solves not only the basic 
frequent sequence mining problem, but also can handle 

time constraints, sliding windows and item taxonomies. 

For this reason, it is worth to find algorithms which have 
these benefits, but are more efficient than the GSP 

algorithm. 

 
 

5   BGSP and SM-Tree algorithms 
The BGSP (Bitmap-based GSP) and the SM-Tree (State 

Machine-Tree) algorithms are based on the “candidate 

generate and test” approach of the GSP algorithm. 

However they differ in several important aspects.  

In the next subsections the novel methods are 
introduced, and some implementation details are 

discussed as well, because the performance (execution 

time and the memory requirement) of an algorithm 
depends strongly on its implementation. The main 

difference in the two proposed methods is the way they 

count the support of the candidate sequences longer than 

two. 

 

5.1 Discovering the frequent 2-sequences 
Both of the algorithms use the same method to count the 

1 and 2-sequences. The 1-sequences i.e. the items are 

counted using an array with size of n, where n denotes 
the number of items that can appear in the database. For 

detecting that an item has already been counted in a 

transaction another array is used. In order not to clear the 

array each time when a new transaction is read, not a 

binary array is used, but the ith column is set to the 

number of the transaction when i was present in the 

sequence. When an item is processed in the sequence, 

the value of the ith element of the “shadow” array is 

checked and if it is the same as the number of the 

transaction just processed, then it shows that the item 
already appeared in the transaction and its counter have 

not being incremented, otherwise the counter in the other 

array is incremented. After scanning the whole database 

the frequent items are found and an index table is created 

in order to indexing the frequent items quickly.  

For counting the 2-candidates two matrices are used 

which is more efficient than using a hash-tree as the GSP 

algorithm does, because the matrices can be indexed in a 

direct way. For counting the candidates having the form 
of <(x,y)> an upper triangular matrix, denoted with M1, 

is needed because in this case x < y. For counting the 

support of sequences in the form of <(x)(y)> a matrix, 
denoted with M2, is needed because in this case both of 

the items can have any value of the whole set of frequent 

items. The dimensions of both matrices are the same as 
the number of the frequent items. Using these matrices 

the counting of the 2-candidates can be achieved in the 

most efficient way because of the direct indexing 

possibility provided by the index table and the matrices. 

To avoid the counting of one item more than one times 

in a transaction, two “shadow” matrices are used as in 

the first phase. 

The 3-candidates are generated by traversing the two 

matrices. The rules for creating the candidates are the 
following. 

Rule1: if sup(M1[s1,s2]) > minsup and sup(M1[s2,s3]) > 

minsup then they are joined, if sup(M1[s1,s3])> minsup. 
Then the resulting sequence is <(s1, s2, s3)>. 

Rule 2: if sup(M1[s1,s2]) > minsup and sup(M2[s2,s3]) > 

minsup then they are joined, if sup(M2[s1,s3])> minsup. 

Then the resulting sequence is <(s1, s2) (s3)>. 

Rule 3: if sup(M2[s1,s2]) > minsup and sup(M1[s2,s3]) > 

minsup then they are joined, if sup(M2[s1,s3])> minsup. 

Then the resulting sequence is <(s1) (s2, s3)>. 

Rule 4: if sup(M2[s1,s2]) > minsup and sup(M2[s2,s3]) > 

minsup then they are joined, if sup(M2[s1,s3])> minsup. 

Then the resulting sequence is <(s1) (s2)(s3)>. 



One of the most time consuming step of the whole 

frequent sequence discovering process is to discover the 

support of the candidates. For this reason this step has to 

be enhanced as well. The following two subsections 
suggest two ways to achieve this process.  

 

5.2 BGSP algorithm 

The main contribution of the BGSP algorithm is that it 
uses a bitmap representation for the candidate sequences. 

The aim of such a representation is to enhance the 

process of detecting whether a sequence contains a 

candidate sequence. For this reason each sequence is 

represented as a matrix. The matrix has as many 

columns, as many itemsets the sequence has. The 

number of the rows equals the number of the frequent 

items. In each column those cells are set to 1 whose item 

is contained by the given itemset. Because such a 

representation is not efficient regarding the memory 
requirement (it has to store values not only for items 

which are present in the sequence, but also for all the 

other items as well), it is worth using only when the 

number of possible frequent items is not large. 

In order to check whether the sequence s contains the 

sequence q they bitmaps have to be compared. In a loop 

the columns of q have to be compared to the columns of 

s by using a binary OR operation. If a column of q 

matches the column of s, the next column of q should be 
compared to the further columns of s. The number of 

candidates to be checked can be reduced by using hash-

trees to store the bitmaps of the candidates. 
The bitmap representation of the two sequences is a 

benefit as well when creating a candidate. Let s1 and s2 

be two k-frequent sequences. Let their bitmap 
representations be B1 and B2. The task is to find whether 

the two sequences share the same (k-1)-subsequence. For 

this reason the first items of s1 and the last item of s2 

have to be pruned. If the resulting two sequences are the 

same, then s1 and s2 are joined. Checking of the 

matching can be done simply by setting the first item of 

the first level in B1 to zero, and the last item in the last 

level of B2 as well. Afterwards the two bitmaps have to 

be compared using a binary AND operation. If the 
bitmaps are the same, then the join of the two sequences 

can lead to a candidate.  

 
 

5.3 SM-Tree algorithm 

The main contribution of the SM-Tree (State Machine-

Tree) approach is to use finite state machines to discover 

whether a candidate sequence is contained by a 
transaction. In order to handle efficiently these machines 

they are joined to form an SM-Tree.  

A sequence is represented as the list of items and the 
separating items, which can be for instance the minus 

sign. For example the sequence <(ab)(c)(de)> is 

represented as ab-c-de. A finite state machine with the 

alphabet ∑ for a given candidate sequence can be created 

as follows. Starting from the start state for each new item 

and for each minus sign as well, a new state is created 

and the transition between the states contains the item. 

These are in the state diagram of the finite state 

machines all forward edges. There are several backward 

edges as well. A backward edge is created between the 

state having no transition with the minus sign and the 
state just after the last minus sign so far. From each state 

there exist transitions to all the items such that the state 

will be the same (self loops). The accept state of the 
machine is the state for the last item of the sequence. It is 

susceptible of proof that the finite state machine gets to 

the accept state iff the input string of the sequence 
contains the string of the candidate sequence for which 

the machine was created. Fig. 2 shows the state diagram 

of the sequence <(ab)(c)(de)>. 

 
Fig.2. State diagram of the sequence <(ab)(c)(de)> 

 

When dealing a large number of candidates sequences 

an efficient way has to be found to handle the several 

state machines. For this reason a JOIN operation is 

introduced between the state machines. Two state 

machines of sequences can be joined if the sequences 

share a prefix in common. Because all state machines 

have a start state, all of them can be joined to form a so-

called State Machine-Tree. Fig. 3 shows the joining step 
of two state machines (the self loops are not shown).  

 
Fig.3. Joining of two state machines of the sequences 

<(ab)(c)(de)> and <(ab)(cd)(e)> 
 

Because multiple state machines are joined, the tree 

can have more than one current state at the same time. In 

order to maintain the several current states of the tree, 
tokens are used. On each current state of the tree a token 

is placed. When a new item is read from the input string 

all the new current states are found using the transition 
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functions. If a token reaches a leaf of the tree, the 

counter of the corresponding sequence is incremented. 

When the last item of the input sequence has been 

processed the support counting phase is finished. Thus 
each item of the input string is processed exactly once. 

Fig. 4 shows the execution time of the SM-Tree and 

that of the SPAM algorithms. 
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Fig.4. Execution time of the SPAM and the SM-Tree 

algorithms on the dataset D25C10T5S4I1.25 
 

6   Conclusion 
In this paper we have covered some of the efficiency 

issues of the algorithmic sequential pattern mining. The 

aim of our examination was to classify the most 
commonly known frequent sequence discovering 

algorithms. We have established a system of aspects for 

classifying these algorithms. After classifying the well-
known algorithms, the basic level-wise algorithm, the 

GSP algorithm was described in detail. Due to its level-

wise approach the GSP algorithm uses less memory than 

the database projection-based methods, thus it is worth 

enhancing the GSP algorithm.  

In the second part of the paper two novel methods 

called Bitmap-based GSP and SM-Tree are contributed. 

The main contribution of both algorithms is to enhance 

the process of the subsequence testing step in the whole 

process. This is an important part of the algorithm hence 
it is executed very often. The new BGSP method uses a 

bitmap representation for the sequences, thus comparing 

two sequences can be done with a simple binary 

operator. However it is efficient only in case of low 

number of items because of the sparse property of the 

bitmaps. The SM-Tree algorithm uses joined state 
machines to count the support of the candidates. It has 

the advantage over the hash-tree of the GSP algorithm 

that using the SM-Tree the items of the transactions are 
processed exactly once while using the hash-tree they are 

processed several times. The SM-Tree algorithm is 

efficient independently of the number of items.  
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