
Efficient Sequential Pattern Mining Algorithms

RENATA IVANCSY, ISTVAN VAJK

Department of Automation and Applied Informatics and HAS-BUTE Control Research Group

Budapest University of Technology and Economics

H-1111, Goldmann Gy. ter 3., Budapest

HUNGARY

Abstract: - Sequential pattern mining is a heavily researched area in the field of data mining with wide variety of

applications. The task of discovering frequent sequences is challenging, because the algorithm needs to process a

combinatorially explosive number of possible sequences. Most of the methods dealing with the sequential pattern

mining problem are based on the approach of the traditional task of itemset mining, because the former can be

interpreted as the generalization of the latter. Several algorithms use a level-wise “candidate generate and test”

approach, while others use projected databases to discover the frequent sequences. In this paper a classification of the

well-known sequence mining algorithm is presented. Because each algorithm has its own advantages and drawbacks
regarding the execution time and the memory requirements, and the exact aim of the algorithms differs as well, thus an

exact ranking of the methods is omitted. A basic level-wise algorithm, the GSP is described in detail. Because the

level-wise algorithms need less memory in general than the projection-based ones, an efficient implementation of the
GSP algorithm is also suggested. Two novel methods, the Bitmap-based GSP (BGSP) and the SM-Tree (State

Machine-Tree) algorithms are presented as an enhancement of the GSP-based sequential pattern mining approach.

Key-Words: - Data mining, Sequential pattern mining, GSP algorithm, Itemset discovering, Apriori algorithm

1 Introduction
The aim of sequential pattern mining is to discover

frequent recurring subsequences in a large sequence

database as patterns. It is an important data mining task

with broad applications like Web usage analysis, DNA
sequences and customer sequences and many others.

The problem of sequence mining can be interpreted as

a generalization of the itemset mining, which was first

introduced in [1]. Consider a database of a supermarket

which stores the transactions of the customers. The

transaction is defined as the set of items bought by a

customer at a time. If the customers are not distinguished

in the database, i.e. no data is stored about the

customers; the task is to find frequent recurring itemsets

in the transactions. This is the itemset mining problem
commonly known as market basket analysis. However, if

the database differentiates the customers from each

other, for example by collecting the customer’s
information by using a card for frequent buyer discounts,

then a sequence of bought items can be created for each

customer. In this way frequent recurring events, i.e.

subsequences can be discovered for example for

advertising purpose.

The problem of sequence pattern mining is more

complex than the problem of frequent itemset

discovering because of the following reason. While in

frequent itemset mining “only” the combinations of the
items has to be generated, in case of sequence mining the

variations of the combinations of the items has to be

generated.

There are several algorithms dealing with the problem

of sequential pattern mining, and they differ in several

ways. Most of them discover all the frequent patterns in

the sequence database, while others discover only the

frequent closed patterns or the maximal frequent
patterns. Another aspect of differentiating the algorithms

could be the representation of the transactions. All

approaches have their advantages and disadvantages, the

different algorithms suit different kind of problem, thus a

classification of them can be useful. In this paper the

different aspects of classifying the sequence pattern

mining algorithms is described. The main features of the

best-known algorithms are outlined. A basic level-wise

algorithm, the GSP is introduced in detail. It is an
important method, because it can handle not only the

simple sequence mining problem, but also the problem

of defining time constraints, sliding time windows and
taxonomies in sequential patterns as well.

The organization of the paper is as follows. Section 2

introduces the problem of sequential pattern mining
including the problem of handling time constraints. In

Section 3 the aspects of classification are discussed and a

classification of the best known algorithm based on the

aspects is shown. Section 4 explains the GSP algorithm,

a basic level-wise, “candidate generate and test”

algorithm in detail. In Section 5 two novel level-wise

methods are suggested, which solve the frequent

sequence mining problem efficiently. Conclusion can be

found in Section 6.

2 Problem Statement
The problem of sequential pattern mining was first
introduced by Agrawal and Srikant in [2]. Let D denote

the set of transactions. Each transaction consist a

customer identifier (CustID), a transaction time (time)
and the set of items, called itemset. The ordering of the

items in an itemset is irrelevant, but in order to handle

the transactions easier, and without loss of generality, it
is assumed that they are in lexicographical order. A

sequence is defined as an ordered list of itemsets.

An itemset is denoted with i=(i1, i2, …, im) where ij is

an item. A sequence is denoted with s=<s1, s2, …,sn>,

where si is an itemset. An item can occur in an itemset

only once while in a sequence multiple times. A

sequence <a1, a2, …,an> is contained by another

sequence <b1, b2, …, bm> if there exists integers i1< i2<

…< in such that a1⊆bi1, a2⊆bi2, …, an⊆bin.
The length of a sequence is defined in two different

ways in the literature. In [2] the length of a sequence is

defined as the number of itemsets contained by the

sequence. [3] and the later results of the authors interpret

the definition of the length of a sequence as the number
of items in the whole sequence. Because the latter

definition is more current, in this paper the second

definition is used. A customer sequence is a list of
itemsets bought by the given customer. In this case the

itemsets are ordered regarding their transaction times,

and the identifier of the sequence transaction (TID) is the
customer identifier. The support of a sequence s

(denoted as sup(s)) is the number of customer

transactions which contain the sequence s.

Beyond the basic problem of sequential pattern mining

several constraints can be added to make the results

more adequate for the user. This can be for example a
sliding window. When using sliding window the

transactions are grouped together such that those

transactions belong to the same group whose transaction
time is between a user-given intervals. This is practically

a window which slides through the transactions. When

defining time constraints the user can give a maximum

gap and a minimum gap between the transactions

belonging to the same group. The purpose of the

minimum gap is to not to distinguish those transactions

which are too close to each other, and defining the
maximum gap means that the transactions which are far

from each other are irrelevant. For example for a book

store it is irrelevant, whether a customer buys two books
in three years. It has more relevance when the time

interval between the two events is less than a year.

When given a user-defined minimum support threshold
(minsup) the task of sequential pattern mining is to

discover those sequences which are contained by at least

minsup number of sequences in the database. These

sequences are called frequent sequences. If the size of

the sequence is k, it is denoted as k-sequence.

3 Classification of the algorithms
Like in frequent itemset mining the algorithms for the
problem of frequent sequence mining differs in many

ways. When comparing the performance of two

algorithms it is important that they should achieve about
the same task.

In this paper the following aspects are considered to be

relevant when classifying frequent sequence discovering
algorithms:

• The type of the discovered frequent sequences.

• The method of the search space traversal.

• The number of disk access, i.e. which basic

frequent itemset mining algorithm serves as a

basis for the sequence mining method.

• The representation of the transactions, i.e. how

the support of the transaction can be counted.

3.1 Type of the frequent sequences
It is an important aspect that frequent patterns are

searched for by the algorithm. Both the execution time
and the memory requirement depend strongly on the

type of the discovered frequent sequences. The reason

for that is that the number of the different types of
frequent sequences differs significantly.

The most general approach is to discover all the

sequences whose support is over the minimum support

threshold. The following algorithms discover all the

frequent sequences: AprioriAll [2], GSP [3], SPIRIT [4],

SPADE [5], FreeSpan [6], PrefixSapn [7] and SPAM

[8].

Another approach is to discover only the maximal

frequent sequences. A sequence s is maximal if s is not
contained in any other sequence. The maximal frequent

sequences are discovered by the following algorithms:

AprioriSome [2], DynamicSome[2] and DFS-MINE [9].
The benefit of mining only the maximal sequences is

that in this case the search space of the mining algorithm

is reduced significantly, however the drawback of it, that

the support values of the non-maximal sequences are not

present. This approach is useful when the application

needs only the maximal sequences.

The definition of the closed sequence is similar to that

of the closed itemset. The sequence s is a frequent closed

sequence, if s is frequent, and there exists no
supersequence q of s, such that the support of q is the

same as the support of s. The benefit of discovering only

the frequent closed sequences is that all the frequent

sequences and their support values can be derived from

them, and it reduces the search space significantly,

however not as much as the maximal sequence

discovering methods. CloSpan [10] and BIDE [11] are

algorithms which discover the frequent closed

sequences.

3.2 Search space traversal
When traversing the search space the algorithms use two

types of approaches. The first is the breadth-first search

traversal, BFS for short, and the second is the depth-first

search traversal, DFS for short. The DFS has an elegant
recursive implementation, while BFS needs more

iteration. BFS is used by the AprioriAll, AprioriSome,

DynamicSome and GSP algorithms. The DFS traversal
is used by FreeSpan, PrefixSpan, SPAM and DFS-

MINE. The SPADE algorithm offers a possibility to the

user to choose between the two methods.

3.3 Number of disk access
Because of the high cost of the I/O process, it is an

important issue how many times the algorithm has to

access the database. In the frequent itemset mining area
there exist basically two types of algorithms regarding

the number of disk access. The first type incorporates the

methods like the Apriori [10] algorithm, i.e. Apriori-like
algorithms, which access the database at least as many

times as the size of the longest itemset is. In sequence

mining there exist several algorithms whose approach is

based on the principles of the Apriori algorithm, like

AprioriAll, AprioriSome, DynamicSome, GSP, SPADE

and SPIRIT. The other approach of the itemset mining is

the two-phase mining like the FP-growth algorithm [12].

The FP-growth algorithm scans the database only twice,

while a so-called FP-tree is created in the main memory.
The process is then executed recursively by creating

further conditional FP-trees in the memory. The idea of

the FreeSpan and PrefixSpan algorithms is based on the
principle of the FP-growth algorithm, thus they access

the database much less than the Apriori-like algorithms

do. However, the memory requirements of the former
algorithms are much huger than that of the latter.

3.4 Transaction representation
Two approaches are wide-spread in counting the support

of the transactions, the horizontal and the vertical
representation. Both of the two representations can be

implemented both as lists and as bitmaps. Thus four

types of representation exist. The existing sequential
pattern mining algorithms use lists in case of horizontal

representation and in case of vertical representation both

list and bitmaps.

The horizontal transaction representation means that

for each transaction the itemsets are listed which are

contained by the transaction. By vertical representation

for each sequence there is a list of transaction identifiers

which holds the given sequence. If N denotes the number

of transactions in the database, then using a bitmap
vertical representation means that for each sequence

there exists a bit vector of length N. The ith item of the

vector is set 1 if the transaction with the identifier i
contains the given sequence, else it is set to 0.

The benefit of the vertical representation is that the

support counting of a candidate sequence can be

achieved easily by intersecting the TID lists or vectors of

two sequences. The drawback is, however, that the
length of the list or the vector depends on the number of

transactions, which can be very large.

All of the algorithms mentioned so far use a horizontal
representation except SPADE, which uses a linked list

for the transaction identifiers, and SPAM, which uses a

vertical bitmap representation. Table 1 shows the
different features of the most commonly known frequent

sequence mining algorithms regarding the aspects

described so far.

Table 1. Classification of the algorithms

Algorithm BFS/

DFS

All/

Max/

Closed

Fundamental

algorithm

Transaction

representa-

tion

AprioriAll [2] BFS All Apriori Horizontal

AprioriSomew [2] BFS Max Apriori horizontal

DynamicSome [2] BFS Max Apriori horizontal

GSP[3] BFS All Apriori horizontal

SPIRIT [4] BFS All Apriori Horizontal

SPADE [5] both All Apriori Vertical list

FreeSpan [6] DFS All FP-growth Horizontal

PrefixSpan [7] DFS All FP-growth Horizontal

SPAM [8] DFS All Apriori Vertical

bitmap

DFS-MINE [9] DFS Max Horizontal

CloSpan [10] DFS Closed FP-growth Horizontal

BIDE [11] DFS Closed –– Horizontal

Regarding the features of the methods depicted in

Table 1. The algorithms which discover all the frequent
sequences can be categorized mainly into three classes

which is depicted in Fig. 1.

AprioriAll

GSP

SPIRIT

SPADE

SPAM

FreeSpan

PrefixSpan

HorizontalHorizontal Vertical

Apriori-based Projection-based

Fig. 1. Classification of the algorithms

4 GSP algorithm
The GSP (Generalized Sequential Patterns) is one of the

first sequential pattern mining algorithms. Its idea is
based on the Apriori frequent itemset mining algorithm,

and uses the a-priori hypothesis, namely, a sequence can

be only frequent, if all its subsequences are frequent as
well. The GSP is a level-wise, “candidate generate and

test” method. The GSP algorithm uses the length

definition as the number of items contained by the
transaction.

The algorithm works as follows. During the first

database scan the 1-sequences (practically the frequent

items) are discovered. It is done by counting the support

of each item in the database such that when processing a

transaction a counter of a certain item is incremented

only once, no matter how many times the transaction
contains the given item. From the frequent one

sequences 2-candidates are generated. There are two

types of 2-candidates, namely, the candidates which are
in the form <(x,y)>, where x and y are different frequent

items, and x < y, and the candidates of the form

<(x)(y)>, where x and y are arbitrary frequent items.
After generating the candidates a further database scan

follows, and the support of the candidates is counted.

In general the rule for generating a candidate of size k

is as follows. Let s1 and s2 be two sequences of size (k-

1). Let s1’ be a sequence derived from s1 such that the

first item of the s1 is omitted. Let s2’ be a sequence
derived from s2 such that the last item of it is omitted. If

s1’ = s2’, then s1 and s2 are joined to cerate a sequence s3
of size k. The resulting sequence s3 is generated as
follows. The prefix of s3 is the sequence s1. The only

question is how the last item of s2 is inserted to the end

of the sequence. If the last item of s2 is a single item in

the last itemset, then it is inserted as a new itemset at the

end of s3. If there were other items in the same itemset

before the last item of s2, then it is inserted at the end of

the last itemset of s3. s3 becomes only a candidate if all

its (k-1)-subsequences are also frequent, thus this has to

be checked as well. For this reason all the (k-1)

subsequences are generated from s3 by omitting each
single item from the sequence. If all the resulting

sequences are frequent, then s3 becomes a candidate.

After generating the k-candidates, a database scan is
executed and the support of each candidate is counted.

To reduce the number of candidates to be checked when

processing a transaction, a hash-tree is created whose

leafs index the candidates. Using this hash-tree the

process of counting the support of the candidate is

enhanced. The GSP algorithm solves not only the basic
frequent sequence mining problem, but also can handle

time constraints, sliding windows and item taxonomies.

For this reason, it is worth to find algorithms which have
these benefits, but are more efficient than the GSP

algorithm.

5 BGSP and SM-Tree algorithms
The BGSP (Bitmap-based GSP) and the SM-Tree (State

Machine-Tree) algorithms are based on the “candidate

generate and test” approach of the GSP algorithm.

However they differ in several important aspects.

In the next subsections the novel methods are
introduced, and some implementation details are

discussed as well, because the performance (execution

time and the memory requirement) of an algorithm
depends strongly on its implementation. The main

difference in the two proposed methods is the way they

count the support of the candidate sequences longer than

two.

5.1 Discovering the frequent 2-sequences
Both of the algorithms use the same method to count the

1 and 2-sequences. The 1-sequences i.e. the items are

counted using an array with size of n, where n denotes
the number of items that can appear in the database. For

detecting that an item has already been counted in a

transaction another array is used. In order not to clear the

array each time when a new transaction is read, not a

binary array is used, but the ith column is set to the

number of the transaction when i was present in the

sequence. When an item is processed in the sequence,

the value of the ith element of the “shadow” array is

checked and if it is the same as the number of the

transaction just processed, then it shows that the item
already appeared in the transaction and its counter have

not being incremented, otherwise the counter in the other

array is incremented. After scanning the whole database

the frequent items are found and an index table is created

in order to indexing the frequent items quickly.

For counting the 2-candidates two matrices are used

which is more efficient than using a hash-tree as the GSP

algorithm does, because the matrices can be indexed in a

direct way. For counting the candidates having the form
of <(x,y)> an upper triangular matrix, denoted with M1,

is needed because in this case x < y. For counting the

support of sequences in the form of <(x)(y)> a matrix,
denoted with M2, is needed because in this case both of

the items can have any value of the whole set of frequent

items. The dimensions of both matrices are the same as
the number of the frequent items. Using these matrices

the counting of the 2-candidates can be achieved in the

most efficient way because of the direct indexing

possibility provided by the index table and the matrices.

To avoid the counting of one item more than one times

in a transaction, two “shadow” matrices are used as in

the first phase.

The 3-candidates are generated by traversing the two

matrices. The rules for creating the candidates are the
following.

Rule1: if sup(M1[s1,s2]) > minsup and sup(M1[s2,s3]) >

minsup then they are joined, if sup(M1[s1,s3])> minsup.
Then the resulting sequence is <(s1, s2, s3)>.

Rule 2: if sup(M1[s1,s2]) > minsup and sup(M2[s2,s3]) >

minsup then they are joined, if sup(M2[s1,s3])> minsup.

Then the resulting sequence is <(s1, s2) (s3)>.

Rule 3: if sup(M2[s1,s2]) > minsup and sup(M1[s2,s3]) >

minsup then they are joined, if sup(M2[s1,s3])> minsup.

Then the resulting sequence is <(s1) (s2, s3)>.

Rule 4: if sup(M2[s1,s2]) > minsup and sup(M2[s2,s3]) >

minsup then they are joined, if sup(M2[s1,s3])> minsup.

Then the resulting sequence is <(s1) (s2)(s3)>.

One of the most time consuming step of the whole

frequent sequence discovering process is to discover the

support of the candidates. For this reason this step has to

be enhanced as well. The following two subsections
suggest two ways to achieve this process.

5.2 BGSP algorithm

The main contribution of the BGSP algorithm is that it
uses a bitmap representation for the candidate sequences.

The aim of such a representation is to enhance the

process of detecting whether a sequence contains a

candidate sequence. For this reason each sequence is

represented as a matrix. The matrix has as many

columns, as many itemsets the sequence has. The

number of the rows equals the number of the frequent

items. In each column those cells are set to 1 whose item

is contained by the given itemset. Because such a

representation is not efficient regarding the memory
requirement (it has to store values not only for items

which are present in the sequence, but also for all the

other items as well), it is worth using only when the

number of possible frequent items is not large.

In order to check whether the sequence s contains the

sequence q they bitmaps have to be compared. In a loop

the columns of q have to be compared to the columns of

s by using a binary OR operation. If a column of q

matches the column of s, the next column of q should be
compared to the further columns of s. The number of

candidates to be checked can be reduced by using hash-

trees to store the bitmaps of the candidates.
The bitmap representation of the two sequences is a

benefit as well when creating a candidate. Let s1 and s2

be two k-frequent sequences. Let their bitmap
representations be B1 and B2. The task is to find whether

the two sequences share the same (k-1)-subsequence. For

this reason the first items of s1 and the last item of s2

have to be pruned. If the resulting two sequences are the

same, then s1 and s2 are joined. Checking of the

matching can be done simply by setting the first item of

the first level in B1 to zero, and the last item in the last

level of B2 as well. Afterwards the two bitmaps have to

be compared using a binary AND operation. If the
bitmaps are the same, then the join of the two sequences

can lead to a candidate.

5.3 SM-Tree algorithm

The main contribution of the SM-Tree (State Machine-

Tree) approach is to use finite state machines to discover

whether a candidate sequence is contained by a
transaction. In order to handle efficiently these machines

they are joined to form an SM-Tree.

A sequence is represented as the list of items and the
separating items, which can be for instance the minus

sign. For example the sequence <(ab)(c)(de)> is

represented as ab-c-de. A finite state machine with the

alphabet ∑ for a given candidate sequence can be created

as follows. Starting from the start state for each new item

and for each minus sign as well, a new state is created

and the transition between the states contains the item.

These are in the state diagram of the finite state

machines all forward edges. There are several backward

edges as well. A backward edge is created between the

state having no transition with the minus sign and the
state just after the last minus sign so far. From each state

there exist transitions to all the items such that the state

will be the same (self loops). The accept state of the
machine is the state for the last item of the sequence. It is

susceptible of proof that the finite state machine gets to

the accept state iff the input string of the sequence
contains the string of the candidate sequence for which

the machine was created. Fig. 2 shows the state diagram

of the sequence <(ab)(c)(de)>.

Fig.2. State diagram of the sequence <(ab)(c)(de)>

When dealing a large number of candidates sequences

an efficient way has to be found to handle the several

state machines. For this reason a JOIN operation is

introduced between the state machines. Two state

machines of sequences can be joined if the sequences

share a prefix in common. Because all state machines

have a start state, all of them can be joined to form a so-

called State Machine-Tree. Fig. 3 shows the joining step
of two state machines (the self loops are not shown).

Fig.3. Joining of two state machines of the sequences

<(ab)(c)(de)> and <(ab)(cd)(e)>

Because multiple state machines are joined, the tree

can have more than one current state at the same time. In

order to maintain the several current states of the tree,
tokens are used. On each current state of the tree a token

is placed. When a new item is read from the input string

all the new current states are found using the transition

a b - c d - e

- -

-

- e

a b - c

- d e
-

d

-

JOIN

a b - c - d e
S1

- -

S2 S3 S4 S5 S6 S7 S0

S0 S1 S2 S3 S4 S5 S6 S7

S0 S1 S2 S3 S4

S5 S6 S7

S8 S9 S10

- -

S0
a b - c - d e

S1 S2 S3 S4 S5 S6 S7

∑\{a} ∑\{b,-} ∑\{-} ∑\{c} ∑\{-} ∑\{d} ∑\{e,-} ∑

functions. If a token reaches a leaf of the tree, the

counter of the corresponding sequence is incremented.

When the last item of the input sequence has been

processed the support counting phase is finished. Thus
each item of the input string is processed exactly once.

Fig. 4 shows the execution time of the SM-Tree and

that of the SPAM algorithms.

0

20

40

60

80

100

120

140

160

180

200

0.4% 0.5% 0.6% 0.7% 0.8% 0.9% 1.0% 1.1% 1.2% 1.3% 1.4% 1.5%

minimum support (minsup)

m
in
in
g
 t
im
e
 (
s
e
c
)

SPAM SMTree

Fig.4. Execution time of the SPAM and the SM-Tree

algorithms on the dataset D25C10T5S4I1.25

6 Conclusion
In this paper we have covered some of the efficiency

issues of the algorithmic sequential pattern mining. The

aim of our examination was to classify the most
commonly known frequent sequence discovering

algorithms. We have established a system of aspects for

classifying these algorithms. After classifying the well-
known algorithms, the basic level-wise algorithm, the

GSP algorithm was described in detail. Due to its level-

wise approach the GSP algorithm uses less memory than

the database projection-based methods, thus it is worth

enhancing the GSP algorithm.

In the second part of the paper two novel methods

called Bitmap-based GSP and SM-Tree are contributed.

The main contribution of both algorithms is to enhance

the process of the subsequence testing step in the whole

process. This is an important part of the algorithm hence
it is executed very often. The new BGSP method uses a

bitmap representation for the sequences, thus comparing

two sequences can be done with a simple binary

operator. However it is efficient only in case of low

number of items because of the sparse property of the

bitmaps. The SM-Tree algorithm uses joined state
machines to count the support of the candidates. It has

the advantage over the hash-tree of the GSP algorithm

that using the SM-Tree the items of the transactions are
processed exactly once while using the hash-tree they are

processed several times. The SM-Tree algorithm is

efficient independently of the number of items.

Acknowledgments
This work has been supported by the fund of the Hungarian

Academy of Sciences for control research and the Hungarian

National Research Fund (grant number: T042741).

References:

[1] R. Agrawal and R. Srikant, Fast algorithms for
mining association rules, Proc. of the 20th Int'l

Conference on Very Large Databases, Santiago,

Chile, Sept. 1994
[2] R. Agrawal and R. Srikant, Mining Sequential

Patterns, In Proc. of the 11
th
 Int’l Conference on

Data Engineering, Taipei, Taiwan, March 1995.

[3] R. Srikant and R. Agrawal, Mining Sequential

Patterns: Generalizations and Performance

Improvements, In Proc. of the 5
th
 Int. Conference

extending Database Technology (EDBT’96),

Avignong, France, 1996, pp. 3-17.

[4] M. N. Garofalakis, R. Rastogi and K. Shim,
SPIRIT:Sequential Pattern Mining with Regular

Expression Constraints, In Proc. of of the 25th

International Conference on Very Large Data Bases,
Edinburgh, Scotland, UK, 7-10. Sept, 1999, pp. 223-

234.

[5] M. Zaki. SPADE: An efficient algorithm for mining
frequent sequences. Machine Learning, 40:31–60,

2001.

[6] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal,

MC Hsu, FreeSpan: Frequent Pattern-Projected

Sequential Pattern Mining, In Proc. of the 6th Int.

Conf. on Knowledge Discovery and Data Mining

(KDD2000), Boston, USA, pp. 20-23. 2000.

[7] J. Pei et al. PrefixSpan: Mining sequential patterns

efficiently by prefix-projected pattern growth. In
Proc. of International Conference on Data

Engineering, ICDE’01, Heidelberg, 2001.

[8] J. Ayres, J. E. Gehrke, T. Yiu and J. Flannick,

Sequential Pattern Mining Using Bitmaps. In

Proceedings of the Eighth ACM SIGKDD

International Conference on Knowledge Discovery

and Data Mining. Edmonton, Alberta, Canada, July

2002.

[9] I. Tsoukatos and D.Gunopulos, Efficient Mining of

Spatiotemporal Patterns, In Proc. of 7
th
 International.

Symposium on Spatial and Temporal Databases, Los

Angeles, USA, 2001, pp. 425-442.

[10] X. Yan, J. Han and R. Afshar, CloSpan: Mining
Closed Sequential Patterns in Large Databases, In

Proc. of the 2003 SIAM International Conference on

Data Mining, San Fransisco, USA, pp. 166-177.

[11] J. Wang and J. Han, BIDE: Efficient Mining of

Frequent Closed Sequences, In Proc. of the 20
th

International Conference on Data Engineering,

Boston, Massachusets, 2004.

 [12] J.Han, J. Pei and Y. Yin, Mining frequent patterns

without candidate generation, In Proc. of the 2000
ACMSIGMOD Int’l Conf. On Management of Data,

Dallas, Texas, USA, May 2000.

