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Abstract: Feature selection (FS) is a major issue in developing efficient pattern recognition systems. FS 
refers to the selection of the most appropriate subset of features that describes (adequately) a given 
classification task. The objective of this paper is to perform a thorough analysis of the performance and 
efficiency of feature selection algorithms (FSAs). The analysis covers a variety of important issues with 
respect to the functionality of FSAs, such as: (a) their ability to identify relevant features, (b) the 
performance of the classification models developed on a reduced set of features, (c) the reduction in the 
number of features, and (d) the interactions between different FSAs with the techniques used to develop 
a classification model. The analysis considers a variety of FSAs and classification methods. 
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1 Introduction 
A classification problem involves the assignment of 
some objects to a set of predefined classes. Each 
object i is assumed to be a multivariate vector xi=(xi1, 
xi2, …, xin), where xij is the description of object i on 
feature xj. Essentially, the objective in a classification 
problem is to identify an unknown mapping function 
f(x) that assigns each object to one of the predefined 
classes as accurately as possible. The development of 
f is based on a training sample consisting of m objects 
(x1, c1), (x2, c2), …, (xm, cm), where ci denotes the 
class assignment for object i. Given such a training 
sample, the specification of f can be performed in 
many different ways using well-known methods.  

The appropriate specification of the classification 
model f depends strongly on the quality of the 
training data. This is mainly related to the number of 
training objects and the adequacy of the features used 
in the analysis. FS involves the latter issue. The FS 
problem refers to the selection of the appropriate 
features that should be introduced in the analysis in 
order to maximize the performance of the resulting 
model. This has significant implications for issues 
such as [7]: (1) noise reduction through the 
elimination of noisy features, (2) reduction of the 
computational effort required to develop and 
implement an appropriate model, (3) simplification of 
the resulting models, and (4) facilitation of the easy 
use and updating of the models. 

FS is usually performed as a preprocessing stage 
prior to model development, using special algorithms. 
The development of FSAs has been an active 
research topic in data mining and machine learning. 
FSAs are computational processes, which are used to 
select a set of features that optimizes an evaluation 
measure representing the quality of the features.  

The research on this topic has been mainly 
focused on algorithmic developments, experimental 
evaluations and real world applications. However, 
most of the previous studies on the evaluation of 
FSAs’ performance has focused on a limited number 
of algorithms and a limited number of methods.  

This paper provides an extensive analysis of 
FSAs’ performance in an experimental context using 
both real-world data sets as well as artificially 
generated data with pre-specified characteristics. The 
contribution of the paper compared to previous 
studies involves the analysis of a variety of FSAs 
combined with different popular classification 
methods including statistical and machine learning 
techniques. Such an analysis enables the investigation 
of the interactions between FSAs and the methods 
used for model development, as well as between the 
FSAs performance and the data set characteristics.  

The rest of the paper is organized as follows: 
section 2 outlines the main characteristics and 
functionalities of FSAs. Section 3 describes the 
experimental setup, section 4 presents the obtained 
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results, whereas section 5 concludes the paper and 
discusses possible future research directions. 
 
2 Feature selection algorithms 
An FSA is characterized by the strategy used to 
search for appropriate subsets of features, the 
feature selection process, the evaluation measure 
used to assess the quality of the features and the 
interaction with the classification method used to 
develop the final model [3], [10]. 
 
2.1 Search strategies 
All FSAs employ a search strategy aiming at the 
specification of a feature weighting vector w=(w1, 
w2, …, wn) which has either a binary or real-valued 
form. In the former case, each element wj of the 
weight vector is a 0/1 variable indicating whether 
feature xj should be used in the analysis (wj=1), or 
not (wj=0). Alternatively, each wj can be defined as 
a real-valued variable (usually in [0, 1]) representing 
the importance of feature xj. In general, the search 
for the optimal weight vector can be performed 
through three main strategies [12]: 
 Exponential strategies involving an exhaustive 

search of all feasible solutions. 
 Sequential strategies based on a local search over 

solutions defined by the current solution state. 
 Random strategies that employ randomness to 

avoid local optimal solutions. 
 
2.2 Feature selection process  
The feature selection process is usually 
implemented through forward, backward, 
compound, weighting and random schemes [9].  

Forward techniques iteratively build the 
appropriate set of features beginning from an empty 
set. At each iteration, a feature that optimizes a pre-
specified quality measure is selected and added to 
the current set of selected features. Backward 
processes begin with the full set of attributes and 
iteratively eliminate attributes so that the pre-
specified quality measure is maximized. Compound 
techniques combine forward and backward 
selection, thus enabling both the addition and the 
elimination of features to/from the selected subset of 
features. Weighting approaches assign weights to 
features which act as proxies for the relevance of 
each feature, whereas random selection enables the 
construction of any possible feature subset from the 
current solution state. 
 
2.3 Evaluation measures 
The evaluation measure used in an FSA defines the 
way that the quality of each possible solution 

(subset of features) is assessed. The evaluation 
measure can be considered in relation to the 
classification method used for model development 
or it can be independently defined. In the former 
case, the minimization of the expected classification 
error rate is often used, but alternative measures are 
also applicable (e.g., the ROC curve). Alternatively, 
the quality of each subset of features can be 
assessed independently of the method used. Such 
approaches include measures such as the interclass 
distance [2], divergence measures [13] as well as 
consistency [1], and entropy-based measures [15].  
 
2.4 Interaction schemes 
A final important characteristic of FSAs involves 
the way they interact with the classification method 
used for model development. Three main interaction 
schemes have been explored: 
 Filter schemes involving FSAs that do not 

interact with the classification method during 
feature selection. Within this context, FS is 
performed as a pure preprocessing stage prior to 
model development in order to filter out the 
irrelevant or redundant features from the 
analysis. Therefore, the selection of the most 
appropriate features is not related to the 
classification method used to build the model. 
This is the main disadvantage of such algorithms, 
since the peculiarities of the method are ignored 
during the FS process. However, filter techniques 
have been quite popular mainly due their 
computational efficiency even for large data sets. 
Some popular filter FSAs include the FOCUS 
algorithm [1], the RELIEF algorithm [6], Las 
Vegas algorithms [11], sequential forward and 
backward generation algorithms [4], [14], branch 
and bound techniques [5], etc. 

 Wrapper schemes involving FSAs that use a 
classification method to assess the quality of the 
features [8]. Cross validation and bootstrapping 
techniques are used within this context in order 
to ensure a more reliable estimation of the 
features’ quality. Such an approach explicitly 
considers the interactions between the selected 
features and the method used for model 
development, but this often requires increased 
computational effort.  

 Embedded schemes involve procedures that 
implicitly perform FS as part of a classification 
method. Such approaches are quite popular is 
many machines learning methods such CART, 
rough sets, ID3, C4.5, etc. Similar approaches 
are also used in neural networks (weight decay) 
and support vector machines. 
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3 Experimental analysis 
 
3.1 FSAs and methods 
The main characteristic of the analysis in this paper 
involves the wide variety of FSAs and classification 
methods that are explored. Nine FSAs are 
considered in the analysis including both filter and 
wrapper methods: 
 Las Vegas algorithms: (Las Vegas Filter-LFV, 

Las Vegas Incremental-LVI, Las Vegas 
Wrapper-LVW). The LVF algorithm employs a 
random search strategy to select a subset of 
features that optimize an evaluation measure, 
taking also into consideration the number of the 
selected features. The LVI algorithm is an 
extension of LVF that uses a portion of the 
training data, of gradually increased size 
depending on the quality of the selected features. 
The LVW algorithm is the wrapper version of 
LVF. 

 FOCUS: The FOCUS algorithm is a filter 
algorithm which is based on an exponential 
search strategy to select a subset of features that 
optimize an evaluation measure. 

 Sequential Forward and Backward Generation 
Filter/Wrapper (SFGF, SBGF, SFGW, SBGW): 
The SFGF and SBGF algorithms use a filter 
approach based on a sequential search strategy 
with a forward/backward feature selection 
process to build the appropriate subset of 
features. The SFGW and SBGW are the 
corresponding wrapper versions of the previous 
algorithms. 

 RELIEF: The RELIEF algorithm follows the 
filter scheme based on a random search strategy 
to select features that maximize the separation of 
the classes measured through a distance measure. 
The evaluation measure used for all filter FSAs 

is divergence which enables the consideration of 
both qualitative and quantitative features. For 
wrapper FSAs a 5-fold cross validation approach is 
used together with a classification method to assess 
the quality of the features.  

The methods used in the analysis include linear 
discriminant analysis (LDA), logistic regression 
(LR), the CART algorithm, the nearest neighbor 
algorithm (NN), probabilistic neural networks 
(PNN) and support vector machines with an 
exponential kernel (SVM).  

The consideration of such a variety of FSAs and 
classification methods enable the investigation of 
the performance of the FSAs for different methods 
which are extensively used to develop classification 
models. Furthermore, within this context the 

interactions between FSAs and the methods can also 
be explored.  

 
3.2 Experimental setup 
The experimental analysis is performed in two main 
directions. The first involves the analysis of 15 data 
sets taken from the UCI machine learning 
repository. The characteristics of the data sets used 
in this stage of the analysis are summarized in Table 
1. All data sets are analyzed through a 10-fold cross 
validation experiment. 
 

Table 1: UCI machine learning data sets 
Data sets Objects Features 
Bupa liver disorders 350 6 
Hepatitis 160 19 
Credit screening 690 14 
Ionosphere 350 33 
Mushroom 8120 6 
Pima Indians Diabetes 770 8 
Tic tac toe 960 9 
Thyroid  2800 26 
Breast cancer Wisconsin 570 30 
Voting 440 16 
German credit 1000 20 
Heart disease 270 13 
Monks-1 550 6 
Monks-2 600 6 
Monks-3 550 6 

 
The second part of the analysis involves artificially 
generated two-class data, designed on the basis of 
four factors. Despite the restriction to two-class 
problems, the analysis has also implications to 
multi-class problems (multi-class problems are 
addressed by decomposing them two multiple two-
class problems [6]). 

The first factor defines the type of class 
separation (linear or quadratic). All generated data 
sets involve two-class problems, where the classes 
are defined on the basis of a linear or quadratic 
separating function. In both cases the coefficients 
for the relevant attributes in the separating function 
are modeled as uniformly distributed random 
variables in [1, 2] for the linear terms and [0, 0.25] 
for the quadratic terms. A normally distributed 
constant term with zero mean and unit variance is 
added to the separating function and an additional 
10% noise is also imposed to the classification rule.  

The second factor defines the number of features 
in the data sets. Three cases are considered in the 
analysis involving 10, 15 and 20 features. 

The third factor defines whether irrelevant or 
redundant features are present in the data sets. In 
both cases relevant features are those with non-zero 
coefficients in the separating function. The presence 
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of irrelevant features is considered with features that 
are not used in the separating function and have the 
same mean for both classes. On the other hand, 
redundant features are modeled as features which 
are not used in the separating function but are 
correlated to the relevant features.  

Finally, the fourth factor defines the proportion 
of relevant features in the data as opposed to the 
total number of features. This proportion is varied 
between 40% and 80%, with a 20% increment. 

Henceforth F1 will be used to denote the factor 
involving the presence of irrelevant or redundant 
features, F2 will denote the factor that defines the 
type of class separation, F3 will denote the factor 
defining the number of attributes and F4 will 
denoted the factor that specifies the proportion of 
features that are relevant.  

For each combination of the factors (36 
combinations overall) 10 training and validation sets 
are constructed from the standard normal 
distribution. Each data set consists of 500 objects 
which are equally distributed in two classes. 
 
4 Results 
 
4.1 UCI machine learning data sets 
The first aspect of the analysis involves the accuracy 
of the models developed using the features selected 
from the FSAs compared to the models developed 
on the full set of features. Table 2 reports the 
average ratios (in %) of the accuracy of the reduced 
models to the accuracy of the full models. The 
number of data sets where the average 10-fold CV 
accuracy exceeded the corresponding accuracy of 
the full models is also reported in parentheses. The 
results show that CART and SVM are the two 
methods that most benefit from FS. In both cases, 
all FSAs led to the improvement of the classification 
accuracy. For the rest of the methods, the accuracies 
of the reduced models are slightly inferior to the 
complete models, but the differences are, in most 
cases, limited. It is also interesting to observe that, 
on average, wrapper FSAs outperform filter FSAs.  

 
Table 2: Comparison of reduced to complete models 

in terms of classification accuracy 
 CART LDA PNN KNN SVM LR 
LVF 98.7 (7) 99.6 (5) 91.5 (5) 92.8 (6) 105.6 (9) 98.8 (6)
LVI 98.8 (3) 100.2 (6) 94.4 (6) 94.3 (7) 104.9 (8) 99.7 (8)
FOCUS 100.1 (7) 99.6 (7) 96.9 (8) 97.1 (7) 101.5 (8) 99.3 (6)
SBGF 98.9 (5) 98.9 (6) 91.4 (7) 91.7 (6) 106.8 (7) 98.7 (5)
SFGF 98.7 (5) 99.5 (6) 92.5 (6) 92.5 (6) 107.1 (10) 99.1 (5)
RELIEF 93.8 (6) 95.0 (4) 90.6 (5) 86.5 (3) 101.8 (8) 93.2 (4)
LVW 102.0 (9) 99.6 (5) 95.8 (5) 97.0 (5) 107.4 (12) 99.7 (6)
SBGW 101.9 (10) 100.0 (5) 100.4 (5) 103.8 (9) 106.2 (10) 99.2 (5)
SFGW 101.5 (7) 99.7 (9) 102.1 (10) 102.9 (9) 111.6 (14) 99.4 (8)
Average 99.4 99.1 95.1 95.4 105.9 98.6 

Two additional important issues in FS involve 
the reduction in the number of features, as well as 
the computational time required to select the 
appropriate subset of features. Table 3 presents the 
average proportion of the selected features 
compared to the complete number of features (PSF) 
and the average CPU times (in sec.) for the six filter 
FSAs. Similar results are reported in Table 4 for the 
wrapper FSAs, where the results differ according to 
the method with which each FSA interacts. 

 
Table 3: Proportion of selected features and CPU 

times for the filter FSAs 
 PSF CPU time 
LVF 49.16 1.89 
LVI 61.10 7.79 
FOCUS 78.48 0.36 
SBGF 43.79 0.48 
SFGF 44.46 0.17 
RELIEF 41.76 2.34 

 
Table 4: Proportion of selected features and CPU 

times for the wrapper FSAs 
 PSF   CPU time 
 LVW SBGW SFGF LVW SBGW SFGW
CART 36.09 55.17 39.22 15.9 15.7 30.8 
LDA 50.87 62.08 42.23 1.8 3.7 2.8 
PNN 44.39 65.57 53.99 19.5 69.7 61.2 
KNN 47.42 69.91 52.20 11.2 26.6 22.3 
SVM 22.29 73.53 34.07 5.4 15.7 9.1 
LR 44.53 69.22 43.47 19.2 109.1 46.4 
Average 40.93 65.91 44.20 12.2 40.1 28.8 
 
According to the above results the algorithms LVI, 
FOCUS and SBGW seem to be the least successful 
FSAs in reducing the number of features used for 
model development. For all the other algorithms, the 
average number of selected features is lower that 
50% of the complete set of features. In terms of 
computational efficiency the two sequential 
algorithms (SBGF, SFGF) as well as FOCUS 
clearly outperform the rest of the algorithms. Of 
course, as expected wrapper FSAs, are 
computationally more intensive compared to filter 
approaches, mainly in cases of data sets with a large 
number of features. However, as noted earlier, this 
is compensated by their increased performance in 
terms of the accuracy of the resulting models. 
Finally, it is interesting to notice that the most 
important reduction in the number of the selected 
features is observed for CART and SVM using two 
wrapper methods (LVW, SFGW). For the same 
combination of FSAs-methods the highest 
improvements in accuracy were also observed (cf. 
Table 2). 
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4.2 Artificial data sets 
The analysis of the artificial data sets enables the 
investigation of the performance of the FSAs with 
respect the characteristics of the data.  

In terms of classification accuracy, the most 
important factors involve the presence of irrelevant 
or redundant features (F1) and the proportion of 
factors that are relevant (F4). Table 5 summarizes 
the corresponding results for all FSAs. The 
presented results involve the ratios (in %) of the 
accuracy of the reduced models to the accuracy of 
the full models, averaged over all methods. The 
percentage of experiments where the reduced 
models outperformed the complete models is also 
reported (in parentheses) for each FSA. The results 
show that the success of the reduced models 
decreases when redundant features are present in the 
data as opposed to the case of irrelevant features. On 
average, in almost 54% of the cases with irrelevant 
features the reduced models outperformed the full 
models. On the other hand, when redundant features 
are present, the reduced models outperformed the 
full models in almost 31% of the cases. This is a 
first indication that FSAs are more successful in 
identifying irrelevant features than redundant ones. 
Furthermore, FSAs are more successful in cases 
where the relevant features are a small portion of the 
complete set of features. In almost 65% of the cases 
where only 40% of the features are relevant, the 
reduced models outperformed the full models; the 
same was observed in only 26% of the cases where 
80% of the features were relevant. Overall, the 
wrapper FSAs seem to provide more robust results 
compared to filter FSAs, but they are not always 
superior compared to filter techniques.  

 
Table 5: Comparison of reduced to complete models 

in terms of classification accuracy (artificial data) 
 F1 F4 
 Irrelevant Redundant 40% 60% 80% 
LVF 101.96 

(66.7) 
99.07 
(16.7) 

101.74 
(50.0) 

100.16 
(33.3) 

99.31 
(16.7) 

LVI 101.75 
(66.7) 

99.30 
(16.7) 

101.73 
(66.7) 

100.19 
(33.3) 

99.37 
(16.7) 

FOCUS 101.05 
(66.7) 

100.03 
(33.3) 

100.74 
(50.0) 

100.52 
(50.0) 

100.23 
(33.3) 

SBGF 103.46 
(66.7) 

98.73 
(16.7) 

102.92 
(66.7) 

100.68 
(33.3) 

99.15 
(16.7) 

SFGF 103.69 
(66.7) 

99.74 
(16.7) 

103.25 
(83.3) 

101.33 
(66.7) 

100.10 
(33.3) 

RELIEF 94.48 
(16.7) 

98.12 
(0.0) 

97.55 
(33.3) 

95.61 
(0.0) 

95.45 
(0.0) 

LVW 98.83 
(0.0) 

99.54 
(50.0) 

100.04 
(66.7) 

99.10 
(33.3) 

98.42 
(33.3) 

SBGW 101.22 
(83.3) 

100.66 
(66.7) 

101.60 
(83.3) 

100.85 
(100.0) 

100.30 
(50.0) 

SFGW 100.89 
(50.0) 

100.70 
(66.7) 

102.22 
(83.3) 

100.54 
(66.7) 

99.51 
(33.3) 

Average 100.81 
(53.7) 

99.54 
(31.5) 

101.31 
(64.8) 

99.89 
(46.3) 

99.09 
(25.9) 

 

Except for the performance of the FSAs in terms 
of the classification accuracy, their ability to 
identify relevant features is also considered using 
the artificial data sets. This is analyzed in terms of 
two measures. The first involves the number of 
relevant features that are selected, expressed as 
percentage of the total number of relevant features. 
Similarly, the second measure involves the number 
of irrelevant/redundant features that are selected, 
expressed as percentage of the total number of 
irrelevant/redundant features. The difference 
between the two measures defines a hit rate in          
[-100%, 100%] for each FSA. A hit rate equal to 
100% corresponds to the case where an FSA selects 
all the relevant features but none of the irrelevant/ 
redundant features. A hit rate equal to -100% 
corresponds to the case where an FSA does not 
select any relevant features but it does select all the 
irrelevant/redundant ones.  

Table 6 presents the FSAs’ hit rates (in %) for all 
the four factors used in the analysis. The results 
show all factor have a significant impact on results. 
The most significant differences are observed for 
the factors F1 and F4. In particular, the FSAs are 
more successful in discriminating between relevant 
and irrelevant features, than between relevant and 
redundant features. When the task becomes more 
complex (non-linear separation, large number of 
features, small portion of relevant features), the hit 
rates decrease. Also, the hit rates for the filter 
methods are generally higher to the wrapper 
techniques. 

 
Table 6: Hit rates for the selection of relevant 

features by the FSAs 
 F1 F2 F3 F4 
 1 2 1 2 1 2 3 1 2 3 
LVF 40.9 20.1 31.7 29.3 38.9 28.6 24.0 15.2 29.8 46.5 
LVI 38.5 20.1 31.8 26.7 35.8 28.6 23.5 8.8 29.5 49.6 
FOCUS 31.1 24.1 30.0 25.2 30.9 27.0 25.0 -5.9 28.5 60.3 
SBGF 51.0 23.0 40.9 33.1 42.4 35.2 33.5 26.8 36.8 47.5 
SFGF 51.0 22.7 40.2 33.5 42.7 34.7 33.2 24.3 37.3 49.0 
RELIEF 18.6 16.0 18.2 16.4 18.9 17.4 15.5 -0.5 17.5 35.0 
LVW 25.5 14.9 22.7 17.8 26.6 18.8 15.4 4.8 19.9 36.0 
SBGW 33.3 24.3 29.7 27.9 33.4 28.4 24.7 4.1 28.7 53.7 
SFGW 35.8 19.2 30.6 24.5 35.4 26.5 20.7 15.0 27.3 40.2 
Average 36.2 20.5 30.6 26.1 33.9 27.2 23.9 10.3 28.4 46.4 

 
Table 7 presents some additional results on the 

hit rates for the wrapper FSAs in connection with 
the classification methods. The results show that 
LVW provides consistently worst results compared 
to the two sequential algorithms. In most cases 
SBGW is the most successful algorithm followed by 
SFGW. The interaction of the algorithms with SVM 
provide the most successful results, whereas the 
combination with CART performs poorly. 
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Table 7: Hit rates for the selection of relevant 
features by wrapper FSAs 

 CART LDA PNN KNN SVM LR 
LVW 13.30 22.33 11.90 23.55 27.43 22.95 
SBGW 23.19 30.59 29.61 28.56 29.78 31.19 
SFGW 15.88 29.27 24.22 27.36 38.38 30.00 
 
5 Conclusions 
FS is a major research topic for the development of 
classification methods. This study presented 
experimental results on the performance of several 
FSAs for different popular classification methods, 
using both real world data and artificial data.  

The results show that most FSAs lead to 
significant reductions in the dimensionality of the 
data, without sacrificing the performance of the 
resulting models. Generally, wrapper techniques 
were found to be more successful in terms of 
classification accuracy, but this comes with 
increased computational cost. SVM was found as 
the method that benefited the most from FS. In 
terms of the efficiency of the algorithms in 
identifying features that are actually relevant, the 
analysis showed that, generally, filter techniques 
provide better results. However, it should be 
emphasized that throughout the experimental 
analysis significant differences were observed in the 
features selected by the FSAs, thus indicating that 
relying on a single algorithm may not be a good 
choice when making inferences on which features 
are crucial for a classification task. 

Further analysis could involve the consideration 
of additional FS methodologies such as evolutionary 
techniques (e.g., genetic algorithms) as well as 
branch and bound methods and linear programming 
techniques. It would also be interesting to explore 
the combination of different FSAs in order to obtain 
improved results both in terms of classification 
accuracy, as well as in terms of the identification of 
the relevant attributes for the analysis.  
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