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Abstract: This paper introduces some results, obtained by experiments with evolutionary algorithms in 
synthesis of passive LC filters. The aim of the presented experiments was to verify, if heuristic algorithms 
were able to successfully solve filter design problem including some optimization requirements in the 
mathematical program environment. As shown in some examples, MAPLE program seems to be a convenient 
tool for this task.   
 
Key-Words: - LC filter, Filter synthesis, Evolutionary algorithms, Differential evolution, Optimization 
 
1   Introduction 
Passive-LC filter design based on theory of 
resistively terminated non-dissipative two-ports is 
rigorous and gives excellent results, when filter 
designed operates under "standard" operating 
conditions [1], [2]. But the filter specification 
frequently requires to include other additional 
requirements into design conditions, e.g. the filter 
component values spread minimization, sensitivity 
and dynamics optimization, influence of element 
losses, technological restrictions,... In another word, 
the design should be performed as multi-criteria, 
using suitable optimization procedure. Many 
optimization procedures and strategies have been 
developed for this purpose, but lately the 
inconsiderable attention is paid to the "heuristic" 
algorithms, particularly genetic and evolution 
algorithms. These ones are time consuming, but 
robust and reliable in the selecting of the best 
solution. With respect to the contemporary 
computer technique it is possible to apply such 
algorithms successfully on the standard PC under 
acceptable calculating time, even for relatively 
exigent tasks. 

To verify usability of genetic and evolutionary 
algorithms in analog filter design, some of these 
algorithms were implemented in the MATLAB and 
MAPLE mathematical programs and used in design 
procedure, for the first time in the case of passive-
LC filter synthesis. The results obtained will be 
discussed in the following parts of our contribution.  
 
2   Algorithms used 
Evolutionary Algorithms (EA) simulate evolution in 
nature. Algorithms are “heuristic” and operate with 
a “population” of possible solutions. The key idea is 
“generate and test”. With respect to this, a general 
form of these algorithms can be expressed as 
follows: 
1. Generate and evaluate an initial population P 

(collection of candidate solutions). 
2. Produce and evaluate a collection of new 

individuals P’ by making randomized changes 
to selected members of P. 

3. Replace some of the members (individuals) of P 
with some of the members (individuals) of P’ → 
create new population. 
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4. Evaluate the new population and return to the 
2nd step (unless some termination criterion has 
been reached). 

Each individual (candidate solution) is represented 
by a vector of object variables. The evolution is 
based on survival of the fittest. The individuals are 
evaluated and evaluation result (fitness) determines, 
if are able to be members of the following 
generation. The new individuals arise by mutation 
and crossover or recombination of the “parents”, i.e. 
individuals from the previous generation. The basic 
form of evolutionary algorithm can be written in the 
form (see Ref.[4]) 
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 do (until termination criteria are met or G = Gmax) 
      GP′  = mutate (PG) 
      GP ′′ = recombine ( GP′ ) 
      evaluate GP ′′ = ( ) ( ) ( ){ }GNPGG xfxfxf ,,, ,,, ′′′′′′ r

K
rr

21  
      select PG+1  from GP ′′  and PG 
      G = G + 1 
  end do 

Mutation and recombination are carried out under 
selected algorithm strategy; in the simplest case the 
mutation is done by replacement of randomly 
chosen individual’s parameters by random numbers, 
and recombination (crossover) using formula  
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where vectors 21 xx rr ,  represent "parents" and 
2112 xx rr ,  offspring. Symbol r labels random number, 
10,∈r . As mentioned, selection of the ongoing 

individual - vector of object variables - depends on 
its evaluated fitness ("cost").   
 
 A significant improvement of the computation 
efficiency can be achieved using the Differential 
Evolution (DE) Algorithms. These algorithms 
presented by Price [4] use mutation with the 
differences of randomly sampled pairs of members 
PG and different versions are distinguished by the 
crossover schemes they use. 
The main features of DE algorithms can be 
characterized as follows: 

1. Initial population is generated randomly using 
formula (2) 

{ }
{ }

( )
DjNPi

xxrxx

xxxxx
NPxxxP

lo
j

hi
jj

lo
jGij

GiDGijGiGiGi

GNPGGG

KK

KKv

r
K

rr

,,;,,

;

,,,,,,
;,,,,

)()()(
,,

,,,,,,,,,

,,,

2121

4

21

21

==

−+=

=

≥=

  (2) 

where Gix ,
r  labels the ith object variable vector   

containing D object variables, population P is 
created by NP members. 

2. An auxiliary vector 1+Giv ,
r corresponding to the 

mutation and crossover operation is gained by 
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and the "trial" vector 1+Giu ,
r is formed using 

criterion applied to all the object variables: 

if CRrand j <),( 10   
   then  11 ++ = GijGij vu ,,,, ,  else GijGij xu ,,,, =+1 . 

3.  A selection of the offspring into new population 
is accomplished using decision process 

 
( ) ( )





 ≤

= ++
+ otherwisex

xfufu
x

Gi

GiGiGi
Gi

,

,,,
, r

rrr
r 11

1

if
  (4) 

Note that CR and F are user-specified control 
variables. Schematic representation of the 
algorithm, published in Ref. [4], is shown in Fig. 1. 
 

 
  Fig. 1.:  Schematic representation of DE algorithm. 



Simultaneously to the presented basic form of DE 
algorithm many alternative options were developed. 
The main difference is usually in mutation and 
recombination scheme. The interesting versions 
used in our experiments differ each other in the form 
of auxiliary vector ivr construction: 

A) The "basic" DE version under formula (3). 
B) The "best" DE version, where 

         ( )21 rrbesti xxFxv rrrr −+= . .   (5) 

C) The generalized algorithm 1 (corresponding to 
the "DE/current-to-rand/1" version from [4]) 

              ( ) ( )213 rririi xxFxxKxv rrrrrr −+−+=   (6) 

D) The modified algorithm C): 
  ( ) ( )21 rribestii xxFxxKxv rrrrrr −+−+=      (7)  
 E)   The second modification of algorithm C): 
  ( ) ( )21 rrbestibesti xxFxxKxv rrrrrr −+−+=   (8) 

Some experience with them will be introduced in 
the following. 
With respect to the filter design, object variables 
correspond to the filter circuit elements; fitness is 
evaluated using objective function, usually defined 
as a weighted sum of deviations of individual’s 
frequency response (or other suitable parameters) 
from the given filter requirements.  
 
3   Design Procedure 
At first let us remind that the usage of evolutionary 
algorithms in digital IIR filter design under multi-
criteria requirements has been presented firstly by 
Storn in [5]. Similar problems, concerning analog 
filter design, have been discussed and solved e.g. in 
Ref. [6], [7]. 
Contrary to the aforementioned works, the presented 
procedure solves only the synthesis stage of filter 
design and starts from the given transfer function. 
Such approach is more efficient and saves much 
computing time in comparison to the programs, 
forming the approximation stage and filter synthesis 
together as the only algorithmic block. 
As mentioned, the idea of synthesis procedure 
concerns about a minimization of designed filter 
transfer function errors using EA and DE 
algorithms. 
It starts from the given transfer function parameters 
and "blind" schematic diagram of filter designed. 
No initial conditions are premised, the initial 
population is chosen randomly. To make 
computations fast, symbolic transfer function of the 
filter designed is primarily found using the SYRUP 

library of MAPLE. This symbolic form is 
subsequently used as a basis for all the necessary 
numerical computations. 
The key problem is in an effective evaluation of 
transfer function errors. Two ways are possible: 
- an enumeration of transfer function poles and 

zeroes deviations, 
- an enumeration of deviations of the numerator 

and denominator coefficients. 
The second way requires higher accuracy of 
necessary computations to achieve acceptable result, 
but seems to be simpler and faster. Hence, it was 
preferred in our experiments. 
The other significant question presents objective 
function composition. The fundamental part of 
objective function can be defined as a weighted sum 
of transfer function coefficient deviations. To 
respect other design requirements as well, the 
objective function contains yet another part created 
by penalty functions jPx . With respect to this, a 
general notation of the objective function can be 
written in the form 
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Here akc means the kth coefficient of the transfer 
function of evaluated individual, aki the 
corresponding coefficient of the given transfer 
function and kδ  relative error. Coefficient errors are 
weighted by parameters wk. 
Although the filter element values (i.e. object 
variables) are limited when initial population is 
generated, it is necessary to cross-check it after 
mutation and crossover operations. For this purpose 
each auxiliary vector ivr  is tested and unsuitable 
object variable values are replaced by random 
number, generated under formula (2).  

  
4   Results Achieved 
The discussed design procedure was applied to the 
more normalized LP filter specifications from the 3rd 
to the 10th-order, corresponding to the Chebyshev or 
Cauer approximation function. Testing transfer 
functions were generated using the MAPLE library 
SYNTFIL [3]. The first experiments using simple 



form of Evolutionary Algorithm were not 
successful; acceptable results were obtained in the 
case of lower-order filters only. As the highest, the 
5th-order Chebyshev LP filter was designed. In this 
case, the result was gained after 10000 populations, 
NP = 40, coefficient errors δk ≈ 10-4.  
On this account, the following experiments were 
oriented to the use of DE algorithms. Here design of 
the same filter using the "basic" version A) required 
only 950 populations, NP = 20, coefficient errors 
δk ≈ 10-7 – 10-9. This version was successfully used 
up to the 10th-order of Chebyshev transfer function. 
The proper design required 8000 populations, 
NP = 60 and control parameter setting F = CR = 0.8. 
Under these conditions the coefficient errors 
dropped below δk < 10-4. 
An important role in the convergence rate plays a 
form of objective function. The best results were 
obtained using notation (10), corresponding to the 
sum of quadratic deviations. In comparison to the 
version (9) the "quadratic" objective function 
equalizes coefficient error values and leads to the 
faster convergence. 
The excellent results were obtained using the 
version B) of DE algorithm. For filter order n = 10 
the required number of populations dropped to 
G = 3000 under the same conditions as in the 
"basic" version. 
For illustration, the following Table 1. shows the 
comparison of the 10th-order Chebyshev filter 
element values computed by "exact" design 
procedure and using DE algorithm under the same 
filter operating conditions (RG = 1, RL = 0.376). 
 

Element catalogue 
value DE Algorithm δ (%) 

C1 2.1840 2.183698204 -0.0138 

L2 1.1210 1.121421741 0.0376 

C3 3.1290 3.128978136 -0.0007 

L4 1.1930 1.193359385 0.0301 

C5 3.1890 3.188774565 -0.0071 

L6 1.1990 1.198908058 -0.0077 

C7 3.1740 3.173662332 -0.0106 

L8 1.1760 1.176303737 0.0258 

C9 2.9820 2.982112425 0.0037 

L10 0.8201 0.8209745128 0.1066 

          Table 1.: Design results comparison       

As evident, the differences of element values 
between the both procedures are negligible. 

Similar results were obtained using D) and E) DE 
algorithm versions. Both the versions show 
approximately the same results from computation 
efficiency point-of-view, but require careful setting 
of constants F and CR. Convergence process is 
demonstrated in Fig. 2, showing minimization of 
objective function in dependence on the number of 
iterations (generated populations). 

       
        Fig.2.:  Objective function minimization  

A trouble-free design is likewise in the case transfer 
functions with finite transfer zeroes, e.g. 
corresponding to the Cauer or Inverse Chebyshev 
approximations. Solved example of the 6th-order 
Cauer filter C 06 20b 49 (under filter catalogue) led 
to full minimization of objective function and 
transfer function coefficient errors δk < 10-9. Design 
procedure is insensitive to the non-standard filter 
termination, naturally in the boundaries given by 
physical principles of signal-power-transfer. With 
respect to the computation efficiency, approximately 
equal results were obtained using B), D) and E) 
versions of algorithms tested; version C) worked 
slowly, with relatively high residual value of 
objective function. A typical design parameters:  
NP = 60, G = 2500, δk < 10-9 for setting  
K = rand(0.1 .. 0.95),  F = 0.65, CR = 0.9. 
Presented simple versions of design algorithms 
make easily possible optimization with respect to 
the filter element losses. The losses are expressed 
using Q-factor defined by known formula 

R
LQL

ω
= ; CRQC ω= ,             (12) 

  where R characterizes losses, ω corresponds to the 
passband corner frequency (LP, HP),  or passband 
center frequency (BP). For the prescribed losses it is 
simple to express R values as a function of Q and L 
(or C). This approach does not increase number of 
object variables, when calculation of transfer 
function coefficients is firstly made in symbolic 
form. Some examples of Chebyshev  LP filters from 



the 5th- to the 10th-order proved ability of algorithm 
used to minimize losses influence in wide range; 
transfer function errors achieved were under  
δk ≈10-5 – 10-9. As an example, design of the 6th-
order Chebyshev LP, ap = 1dB, with prescribed 
inductor losses QL = 10 finished with coefficient 
errors δk < 10-9 after 1940 iterations, when NP = 28, 
CR =F = 0.8 (algorithm B) used). 
As mentioned, an optimum efficiency of DE 
algorithms depends on a suitable setting of user-
defined control constants and a population size. 
Systematic testing revealed relative insensitivity to 
the constant CR and F setting in the case of 
algorithms A), B). "Standard" values of F were in 
the range ( )9060 .;.∈F , similarly for CR. 
Algorithms C), D), E) are more sensitive to the 
control variables setting. The best results give 
CR → 1 in combination with ( )80650 .;.∈F . Higher 
values of F slows convergence rate down, lower 
values leads to the convergence stagnation without 
optimum solution reaching. In general, lower values 
of CR significantly increase number of iterations 
necessary for optimum result acquirement.  
The control parameter K should be chosen randomly 
for each evaluation, ( )10;∈K . 
The population size is important from the effectivity 
of computations as well. The optimum size was 
found in the range ( )DDNP 12;7∈ . Higher size 
causes weak convergency and increases number of 
iterations; lower behaves similarly, but, in addition, 
leads to the higher probability of computation 
stagnancy.         
 
5   Conclusion 
The aim of our work has been primarily oriented to 
the systematic verification and comparison of the 
particular options EA and DE algorithms efficiency 
in analog filter synthesis, optimum setting of user-
defined control variables and a formulation of an 
appropriate form of objective function. The results 
achieved made out good applicability and wide 
extent of solved tasks. Note that some of them are 
hardly solvable using "conventional" methods, e.g. 
design of filters with distributed losses [8]. Relative 
disadvantage of heuristic algorithms, which is 
computing time demandingness, can be partially 
suppressed using main procedure translation into C- 
or other similar “machine” language. 
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