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Abstract: - A new approach to area under ROC curve (AUC) evaluation is introduced and compared with the current 
methods. The main idea is based on the Bubble-Sort method. It advantages from the approach to the qualitative 
dependent variable which is used as the ordinal (and not nominal) variable in comparison to the classical approach. For 
binary output data the algorithm reaches the same complexity and values as the other methods. For multi-class 
classification the complexity differs from the classical approaches and the BSA values of AUC don't fail in the special 
cases as the current methods do. 
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1   Introduction 
An ROC graph is a technique for visualizing, organizing 
and selecting classifiers based on their performance. 
ROC curves were developed in the 1950’s as a by-
product of research into making sense of radio signals 
contaminated by noise. More recently it has become 
clear that they are remarkably useful in medical 
decision-making and after that in machine learning. The 
ROC graphs have properties that make them especially 
useful for domains with skewed class distribution and 
unequal classification error costs. For more details see 
[1,2,3]. 
     The especially important information yields the area 
under ROC curve (AUC). It is a criterion used in many 
applications to measure the quality of a classification 
algorithm. The rough chronology of the AUC 
development in past years begins with its’ use for the 
proposes of evaluating the prediction quality [4,5,6]. 
Then AUC was used to compare different models [7,8]. 
This led to its’ use in the role of objective function 
[9,10,11] and to the expansion from binary to multi-class 
AUC [12,13]. The use of the AUC is followed with the 
sceptic restrictions too [14].  
     This publication does not answer the questions about 
the relevance of AUC. A new way of AUC evaluating is 
introduced – the bubble sort approach (BSA) which was 
already used as the weight for improving of the 
prediction of the risk for cardiac death [15,16]. In the 
following paragraphs its explanation, generalization and 
comparison with the other methods will be presented. 
 
 

2   AUC Evaluation – the Current State 
There are more methods of AUC evaluation or 
approximation. Except the computational complexity, 

accuracy and parametric or nonparametric approach, the 
methods differ in the number of classes of the predicted 
variable Y (binary and multi-class AUC). Some current 
algorithms for evaluating both of these types of AUC 
will be shortly described in the next subsections. 
 
2.1   Binary AUC 
At first I will introduce the algorithm with the 
computational complexity O(N

2
), where N is the number 

of the data [9,17]. If the n+/n- are the numbers of cases 
with positive/negative actual state, the x+/x- are the x 
values for cases with positive/negative actual state and 
the g(x) is a heaviside function, then the AUC can be 
expressed by the formula: 
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     The complexity can be decreased at the O(Nlog2N) 
[1,17] by sorting the data according to the variable x at 
first. Then, if the n-

=j/n
+

=j are the numbers of true 
negative/positive cases with the result equal to j and n+

>j 
is the number of true positive cases with test result 
greater than j, the following modification of (1) can be 
used: 
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     There exist approximations with the complexity O(N) 
(e.g. [9]). But the AUC depends on the “randomised 
order of the observations” what results in different 
evaluations of AUC for different randomised ordering. 
In other words, if we repeatedly evaluate the AUC from 
one data set, we achieve different values. Consequently, 



this method has strict limitations and it is not suitable for 
the final classifier performance estimate. Despite of this, 
I mention this method because it is differentiable. If Q is 
the biggest number from n

+ and n
- and s(x) is the 

sigmoid function, the AUC is defined as: 
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2.2   Multi-class AUC 
One way of calculating multi-class AUC is the Provost 
and Domingos approach (P&DA) [1]. The complexity of 
the algorithm is O(C.Nlog2N), where C is the number of 
classes. If the AUC(ci) is the area under the ROC curve, 
where the class ci is used as the positive class and all 
other classes are used as the negative classes and p(ci) is 
the probability of the occurrence of ci,  AUC is 
equivalent to: 
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     The different solution was introduced by the Hand 
and Till (H&TA) [1]. Its’ computational complexity is 
O(C

2
.Nlog2N). If the AUC(ci,cj) is the area under the 

two-class ROC curve involving classes ci and cj, the total 
AUC is defined as: 
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3   AUC by BSA 
In BSA the qualitative dependent variable Y is replaced 
by the dummy variable and used as the ordinal factor. 
This is the main difference between the BSA and the 
traditional approaches. The assessment of AUC by the 
probability approach and trapezoidal or other area 
approximation [1,2,17] is replaced by a complexity of 
sorting the dependent variable which was ranked 
according to the independent variable before. In 
principle the BSA is closer to the Somers‘ Dxy which is 
the nonparametric measure of association [18]. 
 
3.1   Binary AUC by BSA 
At first the dichotomous dependent variable Y is sorted 
according to the independent variable X. The 
computational complexity of this step depends on the 
complexity of the applied sorting method (e.g. quick-sort 
complexity is Nlog2N). 
     Lets mark the dichotomous classes 0 and 1. Then the 
sequence S(X) ordered by values of independent variable 
X, can be as follows (00101). The completely sorted data 
set with respect to dependent variable Y means the 
sequence (00011), also S(Y). The sorting quality rate is 

determined by number of steps (no_steps), which the 
Bubble sort method needs to sort the S(X) to the S(Y). In 
our example, we need just one step to sort completely 
the data set (swap the third and fourth element). The 
maximum number of steps (max_steps) can be achieved, 
when an ordered, left oriented sequence (11000) is 
ordered to the right side (00011). If we assign n0 the 
number of values with the classification 0 and n1 with 
the classification 1, then we can evaluate: 

10 nnsteps ⋅=max_  (6) 

     In the presented example max_steps equals to 6. AUC 
of the risk factor is then determined by the formula: 

max_steps

stepsnomax_steps
AUR

_−
=  (7) 

     In our example AUC equals (6-1)/6, which is approx. 
0,83. 
     The algorithm, as described above, cannot treat one 
specific situation. When there are more different values y 
associated with one concrete value x, it is not known 
how they are ranked and so it is not possible to assess 
how much they contribute to the no_steps. Such group of 
elements is called unsorted subsequence. The solution is 
to sort these unsorted values according to their size and 
add to the no_steps their average number of steps 
av_no_steps. 
 

Theorem 1:  
The average number of steps av_no_steps needed to sort 
the unsorted group of dichotomous variable, where n0 is 
the number of elements with the classification 0 and n1 
with the classification 1 is: 

2
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Proof of theorem 1: 

The idea of this theorems’ proof can be shortly explained 
in next 6 points: 
1. All the permutations of the unsorted group occur with 
the same probability. The number of the permutations is 
P=(n0+n1)! 
2. If the no_steps of one certain permutation Pi equals to 
no_steps(Pi), the average number of steps over all the 
permutations can be expressed by: 
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The aim is to evaluate the sum in the numerator. 
3. We can sort a certain sequence (e.g. 00110) to the 
right (00011) or to the left (11000). The sum of no_steps 
needed for the left and right ordering of a certain 
sequence equals max_steps. 
4. For any sequence (original) exists its image in 
opposite orientation from the ordering point of view (e.g. 
the image of the original 00110 is 01100). The sum of 



no_steps needed for sorting a pair of original and image 
(in the same direction) is the same as when sorting one 
sequence (original or image) in both directions. This 
equals to max_steps. 
5. All the permutations can be paired in couples of 
sequences (original, image). The number of these pairs 
equals to (n0+n1)!/2. 
6. From the conclusions above follows that: 
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     The final algorithm, which evaluates the AUC for 
dichotomous data founded by the BSA, is the same as 
the best current methods [1,17]. The algorithm requires 
total complexity O(Nlog2N). Because there are not any 
empirical improvements between BSA and other 
approaches (the new principle does not advantage in the 
dichotomous cases), I will introduce the multi-class 
AUC by BSA. 
 
3.2   Multi-class AUC by BSA 
At first the dependent variable Y is sorted according to 
the independent variable X. The computational 
complexity of this step depends on the complexity of the 
applied sorting method (e.g. quick-sort complexity is 
Nlog2N). 
     Now it is necessary to assess the order of the classes 
of Y according to their average rank position. If the 
average indexes of some classes equal each other, their 
order will be determined randomly. For example the 
average rank position of the sequence (abbacac) is: 
a=11/3, b=5/2, c=12/2. The classes will be replaced by 
the dummy variables 1, 2 and 3 so that b=1, a=2 and 
c=3. The sequence is then as follows: (2112323). 
     The algorithm works in the same way as in the case 
of dichotomous Y. We replace the sequence (abbacac) by 
the dummy variables and get the sequence (2112323). 
The value of no_steps can be determined in the same 
way as in the dichotomous examples. To sort the 
sequence (2112323) to the right (1122233) by the BSA, 
it is necessary to swap 3 elements, no_steps=3. If there 
are C classes, the maximum number of steps is: 
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     The evaluation of AUC by BSA is the same as for the 
dichotomous case (7). For the sequence (2112323), 
max_steps=2.3+2.2+2.3=16, no_steps=3, AUC=(16-
3)/16=0,81. 

     This algorithm cannot treat the unsorted subsequence. 
The solution is to increment no_steps by av_no_steps. 

 

Theorem 2:  
The average number of steps av_no_steps needed to sort 
the unsorted group of dummy variables, where C is the 
number of classes and ni is the number of elements 
classified as i, is expressed by the following formula: 
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Proof of theorem 2: 
The idea of this theorems’ proof can be shortly explained 
in next 6 points: 
1. All the permutations of the unsorted group occur with 
the same probability. The number of the permutations is: 
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2. If the no_steps of one certain permutation Pi equals to 
no_steps(Pi), the average number of steps over all the 
permutations can be expressed by:  
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The aim is to evaluate the sum in the numerator. 
3. We can sort a concrete sequence (e.g. 112132) to the 
right (111223) or to the left (322111). The sum of 
no_steps needed for the left and right ordering of a 
certain sequence equals max_steps. 
4. For any sequence (original) exists its image in 
opposite orientation of ordering (e.g. the image of the 
original (112132) is (231211)). The sum of no_steps 
needed for sorting a pair of original and image (in the 
same direction) is the same as when sorting one 
sequence (original or image) in both directions. This 
equals to max_steps. 
5. All the permutations can be paired in couples of 
sequences (original, image). The number of these pairs 
equals to (Σni)!/2. 
6. From the conclusions above follows that the 
av_no_steps equals to: 
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     The introduced generalization of BSA on the multi-
class AUC problem means new way of ROC 
interpretation which is rather closer to the statistical 
nonparametric regression than to the probabilistic or 
graphical interpretation. The BSA differs, despite of the 
current methods which are based on the combination of 
the binary AUC, in the computational complexity and 
the resultant AUC values. This will be presented in the 
following two subsections. 
 
3.3   Algorithm for multi-class AUC by BSA 
The algorithm evaluating AUC by BSA for ordinal 
independent variable: 
 
INPUT: X,Y 

OUTPUT: AUC 

 

sort (X,Y) according to X 

ordinal(Y) /* replace Y by ordinal 

dummy variables {1,..,cs} */ 

/* Get from X,Y */ 

cs /* number of classes */ 

C /*C(i) numb. of elements in class i*/ 

N /* number of elements */ 

 

E=C; 

U=false; /* Belongs the current element 

into unsorted subsequence (US)? */ 

UE()=0; /* UE(i) number of unsorted 

elements in class i */ 

NS=0; /* number of steps */ 

ANS=0; /* average number of steps */  

 

/* maximum number of steps */  

MNS=0; 

for i = 1 to cs-1 

  for j = (i+1) to cs 

    MNS=MNS+C(i)*C(j);   

  end for 

end for 

 

for i = 1 to N 

  E(Y(i))=E(Y(i))-1; 

 

  /*detects beginning or middle of US*/ 

  if (i<N)&&(X(i)==X(i+1)) 

    U=true; 

    UE(Y(i))=UE(Y(i))+1; 

 

  /* detects the end of US */ 

  elseif (U==true)  

    UE(Y(i))=UE(Y(i))+1; 

    for j = 1 to (cs-1) 

      for k = (j+1) to cs 

        ANS=ANS+UE(j)*UE(k)/2; 

      end for 

    end for 

    NS=NS+ANS; 

    for j = 2 to cs 

      if (UE(j)>0) 

        for k = 1 to (j-1) 

          NS=NS+UE(j)*E(k); 

        end for 

      end if 

    end for 

    ANS=0; 

    UE()=0; 

    U=false;      

   

  /* detects sorted part of sequence */  

  else 

    for j = 1 to (Y(i)-1) 

      NS=NS+E(j); 

    end for 

  end if 

end for 

AUC=(MNS-NS)/MNS 

 
The complexity of the algorithms depends on the 
number of unsorted subsequences. In the most optimistic 
case (there are no any unsorted subsequences) the 
complexity equals to O(N[log2N+c]) where c is the 
number of classes. In the most pessimistic case (from N 
values there are N/2 unsorted subsequences) the 
complexity is O(N.[log2N+c2]). The second value also 
expresses the complexity of the presented algorithm.  
     In comparison to the other methods, the final ratio of 
complexity depends on the ratio of the N and c. In case 
of the P&DA the BSA algorithm has lower complexity, 
if c.log2N>(log2N+c

2
), what is approximately valid when 

log2N>(c+2). In case of H&TA the BSA complexity is 
lower, if c

2
.log2N>(log2N+c

2
), what is approximately 

when log2N>2, also for N>4. 
 
3.4   Practical Examples 
The following three examples were chosen to emphasize 
some characteristics of P&DA and H&TA in comparison 
with the BSA. Their simplicity should enable to 
comprehend their difference more easily. 
 
Example 1: 
3 nominal classes {a,b,c} are given. Y is sorted 
according to X into the following sequence: (abacbcac). 
The aim is to evaluate the AUC. 

P&DA:  AUC = 43/60 = 0,717 
H&TA:  AUC = 19/27 = 0,704 

     For the proposes of the BSA it is necessary to rank 
the classes according to their average indexes (aavg = 
12/3 = 4; bavg = 7/2 = 3,5; cavg = 18/3 = 6). From that 
follows that b<a<c. The classes will be replaced by the 
dummy variables and the sequence will be as follows 
(21231323). Now the AUC can be directly evaluated. 

BSA:   AUC = 5/7 = 0,714. 
Commentary: the given sequence is not special in any 
case. All the algorithms differ very little in the value of 
AUC.  
 
Example 2: 
3 nominal classes {a,b,c} are given. Y is sorted 
according to X into the following sequence: (aaabbbccc). 
The aim is to evaluate the AUC. 

P&DA:  AUC = 5/6 = 0,833 



H&TA: AUC = 1 
     The sequence can be transformed directly to the 
dummy variables (111222333). 

BSA:   AUC = 1. 
Commentary: the given sequence is ordered and the 
three classes can be separated without misclassification. 
Despite of this fact the P&DA doesn’t evaluate the AUC 
with value 1. The P&DA is described as “sensitive to 
class distributions and error costs” [1]. I just add that it 
(in case of multi-class classification) can never reach the 
value 1 what is evidently wrong. 
 
Example 3: 
3 nominal classes {a,b,c} are given. Y is sorted 
according to X into the following sequence: 
(a1…a50b1a51…a100c1…c100). The aim is to evaluate the 
AUC. 

P&DA:  AUC = 0,996 
H&TA:  AUC = 0,833 

     The a and b classes are of the same average index but 
the resulting AUC by BSA is independent on the chosen 
order of these two classes. 

BSA:  AUC = 0,995 
Commentary: in this example it is shown that in the 
H&TA the weights of all the classes are equal and 
independent on their frequency (“the unweighted 
pairwise discriminability of classes” [1]). It can be 
desirable, if the researcher knows, that the training data 
are not adequate to the real situation. But except this 
very specific situation, the value given by P&DA 
expresses the fact that except the very rare occurrence of 
classification b, the remaining two classes are separable 
without misclassification. AUC by BSA is very close to 
these values. 
 
     From the presented examples follows that in some 
cases the current methods fail. The BSA value of AUC 
was median in all three examples and in both of the 
extreme cases (2 and 3) it was significantly closer to the 
expected value. 
 
 

4   Conclusion 
The new approach to the evaluation of area under ROC 
was introduced. In the case of binary classification there 
are not any empirical improvements between BSA and 
other approaches (the new principle does not advantage 
in the dichotomous models). In the case of multi-class 
classification the AUC evaluated by BSA differs in the 
computational complexity and resultant values in 
comparison to the current approaches (P&DA, H&TA). 
     The complexity of the algorithm depends on the 
number of unsorted subsequences. If N is the number of 
values and c the number of classes, the computational 
complexity of BSA method is O(N.[log2N+c2]). In case 

of the P&DA the BSA algorithm has lower complexity, 
if log2N>(c+2). In case of H&TA the BSA complexity is 
lower for N>4, also always. 
     From the presented examples follows that in some 
cases the current methods fail. The BSA value of AUC 
was median in all three examples and in both of the 
extreme cases (2 and 3) it was significantly closer to the 
expected value. 
     Future research will be focused on the 
implementation of the cost to the BSA. This should 
enable to express the differences in particular 
misclassifications cost or e.g. to evaluate the AUC 
independently on the class frequencies. 
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