
Area under the ROC Curve by Bubble-Sort Approach (BSA)

PETR HONZÍK
Department of Control and Instrumentation

Brno University of Technology, Faculty of Electrical Engineering and Communication,
Kolejní 2906/4, 612 00 Brno

CZECH REPUBLIC

Abstract: - A new approach to area under ROC curve (AUC) evaluation is introduced and compared with the current
methods. The main idea is based on the Bubble-Sort method. It advantages from the approach to the qualitative
dependent variable which is used as the ordinal (and not nominal) variable in comparison to the classical approach. For
binary output data the algorithm reaches the same complexity and values as the other methods. For multi-class
classification the complexity differs from the classical approaches and the BSA values of AUC don't fail in the special
cases as the current methods do.

Key-Words: - ROC, AUC, AUC evaluation, computational complexity, classification

1 Introduction
An ROC graph is a technique for visualizing, organizing
and selecting classifiers based on their performance.
ROC curves were developed in the 1950’s as a by-
product of research into making sense of radio signals
contaminated by noise. More recently it has become
clear that they are remarkably useful in medical
decision-making and after that in machine learning. The
ROC graphs have properties that make them especially
useful for domains with skewed class distribution and
unequal classification error costs. For more details see
[1,2,3].
 The especially important information yields the area
under ROC curve (AUC). It is a criterion used in many
applications to measure the quality of a classification
algorithm. The rough chronology of the AUC
development in past years begins with its’ use for the
proposes of evaluating the prediction quality [4,5,6].
Then AUC was used to compare different models [7,8].
This led to its’ use in the role of objective function
[9,10,11] and to the expansion from binary to multi-class
AUC [12,13]. The use of the AUC is followed with the
sceptic restrictions too [14].
 This publication does not answer the questions about
the relevance of AUC. A new way of AUC evaluating is
introduced – the bubble sort approach (BSA) which was
already used as the weight for improving of the
prediction of the risk for cardiac death [15,16]. In the
following paragraphs its explanation, generalization and
comparison with the other methods will be presented.

2 AUC Evaluation – the Current State
There are more methods of AUC evaluation or
approximation. Except the computational complexity,

accuracy and parametric or nonparametric approach, the
methods differ in the number of classes of the predicted
variable Y (binary and multi-class AUC). Some current
algorithms for evaluating both of these types of AUC
will be shortly described in the next subsections.

2.1 Binary AUC
At first I will introduce the algorithm with the
computational complexity O(N

2
), where N is the number

of the data [9,17]. If the n+/n- are the numbers of cases
with positive/negative actual state, the x+/x- are the x
values for cases with positive/negative actual state and
the g(x) is a heaviside function, then the AUC can be
expressed by the formula:

()∑∑
+ −

= =

−+

−+
−=

n

j

n

k

kj xxg
nn

AUC
1 1

1
 (1)

 The complexity can be decreased at the O(Nlog2N)
[1,17] by sorting the data according to the variable x at
first. Then, if the n-

=j/n
+

=j are the numbers of true
negative/positive cases with the result equal to j and n+

>j
is the number of true positive cases with test result
greater than j, the following modification of (1) can be
used:

∑
=

+

=

−

=+

>

−

=−+ 












+=

N

j

jj

jj

nn
nn

nn
AUC

1 2

1
 (2)

 There exist approximations with the complexity O(N)
(e.g. [9]). But the AUC depends on the “randomised
order of the observations” what results in different
evaluations of AUC for different randomised ordering.
In other words, if we repeatedly evaluate the AUC from
one data set, we achieve different values. Consequently,

this method has strict limitations and it is not suitable for
the final classifier performance estimate. Despite of this,
I mention this method because it is differentiable. If Q is
the biggest number from n

+ and n
- and s(x) is the

sigmoid function, the AUC is defined as:

()∑
=

−+
−=

Q

k

kPk xxs
Q

AUC
1

mod

1
 (3)

2.2 Multi-class AUC
One way of calculating multi-class AUC is the Provost
and Domingos approach (P&DA) [1]. The complexity of
the algorithm is O(C.Nlog2N), where C is the number of
classes. If the AUC(ci) is the area under the ROC curve,
where the class ci is used as the positive class and all
other classes are used as the negative classes and p(ci) is
the probability of the occurrence of ci, AUC is
equivalent to:

() ()∑
=

=
C

i

ii cpcAUCAUC
1

 (4)

 The different solution was introduced by the Hand
and Till (H&TA) [1]. Its’ computational complexity is
O(C

2
.Nlog2N). If the AUC(ci,cj) is the area under the

two-class ROC curve involving classes ci and cj, the total
AUC is defined as:

()
()∑

≠∀−
=

C

jiji

ji ccAUC
CC

AUC
:,

,
1

2
 (5)

3 AUC by BSA
In BSA the qualitative dependent variable Y is replaced
by the dummy variable and used as the ordinal factor.
This is the main difference between the BSA and the
traditional approaches. The assessment of AUC by the
probability approach and trapezoidal or other area
approximation [1,2,17] is replaced by a complexity of
sorting the dependent variable which was ranked
according to the independent variable before. In
principle the BSA is closer to the Somers‘ Dxy which is
the nonparametric measure of association [18].

3.1 Binary AUC by BSA
At first the dichotomous dependent variable Y is sorted
according to the independent variable X. The
computational complexity of this step depends on the
complexity of the applied sorting method (e.g. quick-sort
complexity is Nlog2N).
 Lets mark the dichotomous classes 0 and 1. Then the
sequence S(X) ordered by values of independent variable
X, can be as follows (00101). The completely sorted data
set with respect to dependent variable Y means the
sequence (00011), also S(Y). The sorting quality rate is

determined by number of steps (no_steps), which the
Bubble sort method needs to sort the S(X) to the S(Y). In
our example, we need just one step to sort completely
the data set (swap the third and fourth element). The
maximum number of steps (max_steps) can be achieved,
when an ordered, left oriented sequence (11000) is
ordered to the right side (00011). If we assign n0 the
number of values with the classification 0 and n1 with
the classification 1, then we can evaluate:

10 nnsteps ⋅=max_ (6)

 In the presented example max_steps equals to 6. AUC
of the risk factor is then determined by the formula:

max_steps

stepsnomax_steps
AUR

_−
= (7)

 In our example AUC equals (6-1)/6, which is approx.
0,83.
 The algorithm, as described above, cannot treat one
specific situation. When there are more different values y
associated with one concrete value x, it is not known
how they are ranked and so it is not possible to assess
how much they contribute to the no_steps. Such group of
elements is called unsorted subsequence. The solution is
to sort these unsorted values according to their size and
add to the no_steps their average number of steps
av_no_steps.

Theorem 1:
The average number of steps av_no_steps needed to sort
the unsorted group of dichotomous variable, where n0 is
the number of elements with the classification 0 and n1
with the classification 1 is:

2

.
__ 10 nn

stepsnoav = (8)

Proof of theorem 1:

The idea of this theorems’ proof can be shortly explained
in next 6 points:
1. All the permutations of the unsorted group occur with
the same probability. The number of the permutations is
P=(n0+n1)!
2. If the no_steps of one certain permutation Pi equals to
no_steps(Pi), the average number of steps over all the
permutations can be expressed by:

()

P

Pstepsno

stepsnoav

P

i∑
= 1

_
__ (9)

The aim is to evaluate the sum in the numerator.
3. We can sort a certain sequence (e.g. 00110) to the
right (00011) or to the left (11000). The sum of no_steps
needed for the left and right ordering of a certain
sequence equals max_steps.
4. For any sequence (original) exists its image in
opposite orientation from the ordering point of view (e.g.
the image of the original 00110 is 01100). The sum of

no_steps needed for sorting a pair of original and image
(in the same direction) is the same as when sorting one
sequence (original or image) in both directions. This
equals to max_steps.
5. All the permutations can be paired in couples of
sequences (original, image). The number of these pairs
equals to (n0+n1)!/2.
6. From the conclusions above follows that:

() ()

() 2!
2

!_

__

10

10

10
10

1 nn

nn

nn
nn

P

Pstepsno

stepsnoav

P

i
⋅

=
+

⋅⋅
+

==

=

∑ (10)

■

 The final algorithm, which evaluates the AUC for
dichotomous data founded by the BSA, is the same as
the best current methods [1,17]. The algorithm requires
total complexity O(Nlog2N). Because there are not any
empirical improvements between BSA and other
approaches (the new principle does not advantage in the
dichotomous cases), I will introduce the multi-class
AUC by BSA.

3.2 Multi-class AUC by BSA
At first the dependent variable Y is sorted according to
the independent variable X. The computational
complexity of this step depends on the complexity of the
applied sorting method (e.g. quick-sort complexity is
Nlog2N).
 Now it is necessary to assess the order of the classes
of Y according to their average rank position. If the
average indexes of some classes equal each other, their
order will be determined randomly. For example the
average rank position of the sequence (abbacac) is:
a=11/3, b=5/2, c=12/2. The classes will be replaced by
the dummy variables 1, 2 and 3 so that b=1, a=2 and
c=3. The sequence is then as follows: (2112323).
 The algorithm works in the same way as in the case
of dichotomous Y. We replace the sequence (abbacac) by
the dummy variables and get the sequence (2112323).
The value of no_steps can be determined in the same
way as in the dichotomous examples. To sort the
sequence (2112323) to the right (1122233) by the BSA,
it is necessary to swap 3 elements, no_steps=3. If there
are C classes, the maximum number of steps is:

∑∑
−

= +=

=
1

1 1

.
C

i

C

ij

ji nnstepsmax_ (11)

 The evaluation of AUC by BSA is the same as for the
dichotomous case (7). For the sequence (2112323),
max_steps=2.3+2.2+2.3=16, no_steps=3, AUC=(16-
3)/16=0,81.

 This algorithm cannot treat the unsorted subsequence.
The solution is to increment no_steps by av_no_steps.

Theorem 2:
The average number of steps av_no_steps needed to sort
the unsorted group of dummy variables, where C is the
number of classes and ni is the number of elements
classified as i, is expressed by the following formula:

2

.

__

1

1 1
∑∑

−

= +=
=

C

i

C

ij

ji nn

stepsnoav (12)

Proof of theorem 2:
The idea of this theorems’ proof can be shortly explained
in next 6 points:
1. All the permutations of the unsorted group occur with
the same probability. The number of the permutations is:

 !
1









= ∑

=

C

i

inP (13)

2. If the no_steps of one certain permutation Pi equals to
no_steps(Pi), the average number of steps over all the
permutations can be expressed by:

()

P

Pstepsno

stepsnoav

P

i

i∑
== 1

_
__ (14)

The aim is to evaluate the sum in the numerator.
3. We can sort a concrete sequence (e.g. 112132) to the
right (111223) or to the left (322111). The sum of
no_steps needed for the left and right ordering of a
certain sequence equals max_steps.
4. For any sequence (original) exists its image in
opposite orientation of ordering (e.g. the image of the
original (112132) is (231211)). The sum of no_steps
needed for sorting a pair of original and image (in the
same direction) is the same as when sorting one
sequence (original or image) in both directions. This
equals to max_steps.
5. All the permutations can be paired in couples of
sequences (original, image). The number of these pairs
equals to (Σni)!/2.
6. From the conclusions above follows that the
av_no_steps equals to:

()

2

.

!

.
2

!

_
__

1

1 1

1

1

1 1

1

1

∑ ∑

∑

∑ ∑
∑

∑

−

= +=

=

−

= +=

=

=

=










⋅










=

==

C

i

C

ij

ji

C

i

i

C

i

C

ij

ji

C

i

i

P

i

i

nn

n

nn

n

P

Pstepsno

stepsnoav

 (15)

■

 The introduced generalization of BSA on the multi-
class AUC problem means new way of ROC
interpretation which is rather closer to the statistical
nonparametric regression than to the probabilistic or
graphical interpretation. The BSA differs, despite of the
current methods which are based on the combination of
the binary AUC, in the computational complexity and
the resultant AUC values. This will be presented in the
following two subsections.

3.3 Algorithm for multi-class AUC by BSA
The algorithm evaluating AUC by BSA for ordinal
independent variable:

INPUT: X,Y

OUTPUT: AUC

sort (X,Y) according to X

ordinal(Y) /* replace Y by ordinal

dummy variables {1,..,cs} */

/* Get from X,Y */

cs /* number of classes */

C /*C(i) numb. of elements in class i*/

N /* number of elements */

E=C;

U=false; /* Belongs the current element

into unsorted subsequence (US)? */

UE()=0; /* UE(i) number of unsorted

elements in class i */

NS=0; /* number of steps */

ANS=0; /* average number of steps */

/* maximum number of steps */

MNS=0;

for i = 1 to cs-1

 for j = (i+1) to cs

 MNS=MNS+C(i)*C(j);

 end for

end for

for i = 1 to N

 E(Y(i))=E(Y(i))-1;

 /*detects beginning or middle of US*/

 if (i<N)&&(X(i)==X(i+1))

 U=true;

 UE(Y(i))=UE(Y(i))+1;

 /* detects the end of US */

 elseif (U==true)

 UE(Y(i))=UE(Y(i))+1;

 for j = 1 to (cs-1)

 for k = (j+1) to cs

 ANS=ANS+UE(j)*UE(k)/2;

 end for

 end for

 NS=NS+ANS;

 for j = 2 to cs

 if (UE(j)>0)

 for k = 1 to (j-1)

 NS=NS+UE(j)*E(k);

 end for

 end if

 end for

 ANS=0;

 UE()=0;

 U=false;

 /* detects sorted part of sequence */

 else

 for j = 1 to (Y(i)-1)

 NS=NS+E(j);

 end for

 end if

end for

AUC=(MNS-NS)/MNS

The complexity of the algorithms depends on the
number of unsorted subsequences. In the most optimistic
case (there are no any unsorted subsequences) the
complexity equals to O(N[log2N+c]) where c is the
number of classes. In the most pessimistic case (from N
values there are N/2 unsorted subsequences) the
complexity is O(N.[log2N+c2]). The second value also
expresses the complexity of the presented algorithm.
 In comparison to the other methods, the final ratio of
complexity depends on the ratio of the N and c. In case
of the P&DA the BSA algorithm has lower complexity,
if c.log2N>(log2N+c

2
), what is approximately valid when

log2N>(c+2). In case of H&TA the BSA complexity is
lower, if c

2
.log2N>(log2N+c

2
), what is approximately

when log2N>2, also for N>4.

3.4 Practical Examples
The following three examples were chosen to emphasize
some characteristics of P&DA and H&TA in comparison
with the BSA. Their simplicity should enable to
comprehend their difference more easily.

Example 1:
3 nominal classes {a,b,c} are given. Y is sorted
according to X into the following sequence: (abacbcac).
The aim is to evaluate the AUC.

P&DA: AUC = 43/60 = 0,717
H&TA: AUC = 19/27 = 0,704

 For the proposes of the BSA it is necessary to rank
the classes according to their average indexes (aavg =
12/3 = 4; bavg = 7/2 = 3,5; cavg = 18/3 = 6). From that
follows that b<a<c. The classes will be replaced by the
dummy variables and the sequence will be as follows
(21231323). Now the AUC can be directly evaluated.

BSA: AUC = 5/7 = 0,714.
Commentary: the given sequence is not special in any
case. All the algorithms differ very little in the value of
AUC.

Example 2:
3 nominal classes {a,b,c} are given. Y is sorted
according to X into the following sequence: (aaabbbccc).
The aim is to evaluate the AUC.

P&DA: AUC = 5/6 = 0,833

H&TA: AUC = 1
 The sequence can be transformed directly to the
dummy variables (111222333).

BSA: AUC = 1.
Commentary: the given sequence is ordered and the
three classes can be separated without misclassification.
Despite of this fact the P&DA doesn’t evaluate the AUC
with value 1. The P&DA is described as “sensitive to
class distributions and error costs” [1]. I just add that it
(in case of multi-class classification) can never reach the
value 1 what is evidently wrong.

Example 3:
3 nominal classes {a,b,c} are given. Y is sorted
according to X into the following sequence:
(a1…a50b1a51…a100c1…c100). The aim is to evaluate the
AUC.

P&DA: AUC = 0,996
H&TA: AUC = 0,833

 The a and b classes are of the same average index but
the resulting AUC by BSA is independent on the chosen
order of these two classes.

BSA: AUC = 0,995
Commentary: in this example it is shown that in the
H&TA the weights of all the classes are equal and
independent on their frequency (“the unweighted
pairwise discriminability of classes” [1]). It can be
desirable, if the researcher knows, that the training data
are not adequate to the real situation. But except this
very specific situation, the value given by P&DA
expresses the fact that except the very rare occurrence of
classification b, the remaining two classes are separable
without misclassification. AUC by BSA is very close to
these values.

 From the presented examples follows that in some
cases the current methods fail. The BSA value of AUC
was median in all three examples and in both of the
extreme cases (2 and 3) it was significantly closer to the
expected value.

4 Conclusion
The new approach to the evaluation of area under ROC
was introduced. In the case of binary classification there
are not any empirical improvements between BSA and
other approaches (the new principle does not advantage
in the dichotomous models). In the case of multi-class
classification the AUC evaluated by BSA differs in the
computational complexity and resultant values in
comparison to the current approaches (P&DA, H&TA).
 The complexity of the algorithm depends on the
number of unsorted subsequences. If N is the number of
values and c the number of classes, the computational
complexity of BSA method is O(N.[log2N+c2]). In case

of the P&DA the BSA algorithm has lower complexity,
if log2N>(c+2). In case of H&TA the BSA complexity is
lower for N>4, also always.
 From the presented examples follows that in some
cases the current methods fail. The BSA value of AUC
was median in all three examples and in both of the
extreme cases (2 and 3) it was significantly closer to the
expected value.
 Future research will be focused on the
implementation of the cost to the BSA. This should
enable to express the differences in particular
misclassifications cost or e.g. to evaluate the AUC
independently on the class frequencies.

5 Acknowledgements
The paper presents research and development that is
supported by Ministry of Trade and Industry of the
Czech Republic (FD-K/104), Grant agency of the Czech
Republic (GA 102/03/1097 Industrial Bluetooth wireless
device-net for automation and GA 102/05/0663 Wireless
technology ZigBee for decentralized control systems)
and Brno University of Technology. Without kind
support of abovementioned agencies the research and
development would not be possible.

References:

[1] Fawcett T.: ROC Graphs: Notes and Practical
Considerations for Researchers. HP Laboratories,
© 2004 Kluwer Acadaemic Publisher.

[2] Tilbury J.B.: Evaluation of Intelligent Medical
Systems. PhD Thesis 2002.

[3] Westin L. K.: Receiver Operating Charactesistic
(ROC) analysis. Umeå University, UMINF report,
2001.

[4] Maloof M.A.: On Machine Learning, ROC
Analysis, and Statistical Tests of Significance.
Proceedings of the XVIthConference on Pattern

Recognition. IEEE Press 2002.
[5] Provost F., Fawcett T., Kohavi R.: The Case

Against Accuracy Estimation for Comparing
Induction Algorithms. Proceedings of the Fifteenth

International Conference onMachine Learning, pp.
445–453, Morgan Kaufmann, San Mateo,
California, 1998.

[6] Fielding A.H., Bell J.F.: A review of methods for
the assessment of prediction errors in conservation
presence/absence models. Foundation for

Environmental Conservation. 1997, pp. 38-49.
[7] Bradley A.P.: The Use of the Area under the ROC

Curve in the Evaluation of Machine Learning
Algorithms. Pattern Recognition, 30(7): pp. 1145–
1159, 1997.

[8] Perlich C., Provost F., Simonoff J.S.: Tree
Induction vs. Logistic Regression: A Learning-
Curve Analysis. Journal of Machine Learning

Research 4. 2003, pp. 211-255.
[9] Herschtal A., Raskutti B.: Optimising Area Under

the ROC Curve Using Gradient Descent. Twenty-

first international conference on Machine learning.
2004.

[10] Yan L., Dodier R., Mozer M.C., Wolniewicz R.:
Optimizing Classifier Performance via an
Approximation to the Wilcoxon-Mann-Whitney
Statistic. Proceedings of the Twentieth Intl. Conf.

on Machine Learning. 2004, pp. 848-855. AAAI
Press, Menlo Park, CA.

[11] Corets C., Mohri M.: AUC Optimization vs. Error
Rate Minimization. Advances in neural

information processing systems 16. 2004,
Cambridge MA: MIT Press.

[12] Rees G.S., Wright W.A., Greenway P.: ROC
Method for the Evaluation of Multi-class
Segmentation/Classification Algorithms with
Infrared Imagery. Electronic Proceedings of the
13th British Machine Vision Conference, 2002.

[13] Ferri C., Hernández-Orallo J., Salido M.A.:
Volume Under the ROC Surface for Multi-Class
Problems. Technical Report DSIC. Univ. Politèc.
València. 2003.

[14] Webb G.I., Ting K.M.: On the application of ROC
analysis to predict classification performance
under varying class distributions. Machine

learning, 2004.
[15] Honzík P., Hrabec J., Semrád B,. Honzíková N.:

Risk Stratification Of Patients After Myocardial
Infarction By The Fuzzy And Weighted Methods.
Analysis of Biomedical Signals and Images. 2002,
vol. 16, no. 6, p. 463-465. ISSN 1211-412X.

[16] Honzíková N., Fišer B., Semrád B., Lábrová R.,
Honzík P., Hrabec J. Nonlinear analysis of inter-
beat data in patients after myocardial infarction.
Acta Physiologica Hungarica. 2002, vol. 89, no. 1-
3. ISSN 0231-424X.

[17] ROC. Computation of the Area Under the ROC
Curve. SPSS documentation, 1998.

[18] Frank E., Harrell J.: Regression Modeling
Strategies. NY: Springer, 2001. 568 pages. ISBN 0-
387-95232-2.

