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Abstract: - In this paper, a DSS design procedure is presented. The mentioned DSS is a neural network, which is used to 
estimate the state of a power distribution system loading condition. The effects of different sorts of data distributions, 
pre-processing, complex conformal mapping, input noise, and error function on the learning and  recalling  performance 
of the DSS neural networks are studied. A practical example illustrates how the finally designed DSS can aid decision 
and control operations in a real standard distribution system, in both normal and abnormal conditions. A mathematical 
discussion, on a contradiction concerning to the effect of space equalization on DSS learning is brought in an appendix..  
The paper includes discussions, practical numerical examples, and results. 
    
Keywords—Decision Support, Neural Networks, Utility Management Automation, Human-Centered Systems, State 
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Contingency 
 

1 Introduction  
A decision support system (DSS) provides 

informational support, by processing the available data 
and signals in a utility control room database, for 
decision maker. Artificial intelligent systems (e.g. 
Artificial Neural Networks (ANNs)) are of successful 
signal processing solutions for estate estimation, and 
consequently decision support applications. The term 
"Artificial Intelligence (AI)" was coined by John 
McKarthy in 1954 [1,2]. Nowadays, improvements in 
intelligent signal processing techniques have led to 
adaptive, self-tuning, model free, robust, non-linear, and 
stochastic systems. These systems have small and 
tolerable internal errors [3,4]. 

In the present work a decision support system has 
been introduced to aid power system human operator, 
using artificial neural networks. A considerable effort 
has been focused on testing, comparing, and proving the 
abilities of two well-known ANNs: MLPs and RBFs, 
during learning and recalling periods.   

 

2 DSS Design Procedure 
Radial Basis Functions (RBFs) and Multi Layer 

Perceptrons (MLPs) are the most famous pattern 

recognizer neural networks. These two types of neural 
networks have been used in this work for designing 
classifiers. 

2.1 Radial Basis Function (RBF) Design 
2.1.1 Experimental Results and Observations on 

Uniform Data Distribution 
First of all, uniformly distributed data of Fig. 4, (Part 

1 of this paper) is learnt to a RBF neural network. Since 
the uniformly distributed data have an scattered form, 
the RBF neural network -which gains “k-means 
clustering” unsupervised algorithm- puts a single neuron 
for every single sample in inner layer, i.e. almost 80 
Gaussian neurons are required and generalization ability 
of network is catastrophic!  

The clustering method algorithm puts a class for 
each colony of samples. So, an idea to resolve this 
problem is to increase Gaussian function bandwidth. If 
the Gaussian functions bandwidth, which in BRF nets 
determines the radius of elliptic or circular classes, is 
increased, the classes will be greater, and consequently 
more samples will be included in each class. In extreme 
case, it must converge to the correct number of classes. 
Unfortunately, implementing this idea makes the error 
matrix ill-conditioned or rank troubled. So, this learning 
algorithm does not converge. 
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As BRF nets classification spaces are hyper elliptic 
or hyper spherical, hyper-elliptication of the 
classification spaces may be a way to improve the BRF 
networks learning convergence. Thus, rectangular 
spaces of Fig.s 7 and 8 (Part 1) are transformed to 
circular spaces of Fig.s 9 and 10 (Part 1), using complex 
conformal mappings. Then they are learnt to neural 
network, the learning procedure were fairly satisfactory. 
(The four Fig.s 7 -10 are from Part 1 of this paper. We 
could not place them in the Part 2 again, according to 
the lack of space)  

Random noise was added to the inputs as well. A 
random noise term with γ coefficient (for controlling the 
noise amplitude) was added to the input data. This noise 
term transfers the system from a pure deterministic 
system to a fairly stochastic system. It has a wonderful 
effect on the learning of the network. Without noise, 
there will be problems such as divide by zero or ill 
conditioning of error and coefficients matrices. 
Reducing noise coefficient (γ) reduces the number of 
required neurons in Gaussian layer, but it can not be 
decreased lower than a limit. The limit is the mentioned 
matrix ill conditioning problem. This matter has been 
illustrated in Fig. 1. It can be seen that the conformal 
mapping has significant effect on the number of 
required neurons reduction for learning RBF neural 
network.  
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Fig. 1, Number of neurons required for network learning, 

versus logarithm of noise coefficient. +s show non-mapped 
and *s show mapped situation. 

 
As you see in Fig. 1, applying conformal mapping 

reduces the number of required neurons from 60 to 45, 
which is a good improvement.  But in this case, the 
weakness of generalization capability in RBF is 
remained. Increasing Gaussian neuron bandwidth 
exceeding a limit causes problems. Training error can 
not be reduced lower than a specific value yet, too. 
Besides, training methods like as Learning Vector 
Quantization (LVQ) and Kohonen self organizing 
method have tested and have not given feasible results. 

 

2.1.2 Experimental Results and Observations on 
Concentrated Data Distribution  

 
Now, let us try the concentrated data distribution. In 

spite of uniformly distributed data, clustered (centered) 
data without scaling and conformal mapping (i.e. 
decision space shown in Fig. 5 of Part 1 of this paper) 
show hopeful improvement in RBF training. These data 
are learned with an error less than one percent by 14 
inner layer neurons. Compare 14 neurons to 45 neurons 
in the former case. Meanwhile, if ten percent error will 
be satisfactory, only two inner layer neurons are 
enough. Furthermore, adding input noise is not 
necessary.  

Finally, RBF network trained by clustered (centered) 
data has two input, 14 Gaussian middle layer neurons 
and two linear output layer neurons. This is much better 
and smaller than the RBF network trained by uniform 
data, in order of dimension.  

The generalization capability of this network is much 
higher than the network trained by uniformly distributed 
data, too. It can respond to training and test set inputs 
with an acceptable precision. The reason of this can be 
found in Gaussian characteristics of RBF network 
transfer functions. Hence, “RBF neural networks are 
center oriented classifier neural network, and it must be 
focused on class centers for training it”. 

2.2  Multi Layer Perceptron (MLP) Design 
2.2.1 Designing MLP Topology and Learning 

Method 
“Error Back Propagation” learning algorithm is used 

for training Multi Layer Perception. Also, “Cross 
Validation” method [3,4] is used in order to test and 
increase the ability of learned neural network in 
responding to new inputs (generalization). So that, 20 
percent of samples (data) are selected randomly as test 
set, and the residue is taken as training set. Learning 
will be continued, unless the both of training set error 
( ETrn ) and the test set error ( ETst ) decrease. The 
advantage of this method is preventing “over-training” 
or “over-fitting” of network which graphically saying is 
decreasing ETrn curve when ETst curve is increasing.  

For the reason of having two inputs, the neural 
network must have two input units. The DSS must 
produce one of the four possible pre-defined states. For 
designing output layer three essential topologies are 
suggested:  
1. One linear single neuron which generates four 

numbers of 1, 2, 3, 4, as four pre-defined classes.  
2. Two sigmoid neurons which generate four binary 

output numbers, as a BCD (Binary Coded Decimal).  
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3. Four sigmoid neurons which one of them having 
greatest output shows the estimated state, as one-hot 
output.  

One advantage of topology No. 1 is having physical 
interpretation. The network can use hidden logic 
underlying in its structure for better learning. The 
network output for new inputs may not be integer, so 
decision about system state (class) will be confusing in 
such a cases (i.e. non-integer output). Another 
disadvantage of this topology is its less capability in 
error tolerance. For example, a 0.7 error in topology No. 
1 can change the result. But, in topology No. 3 even if 
the output of one of wrong neurons were 0.7 (instead of 
zero), the correct neuron, is selected as proper activated 
output neuron, because it has a greater value (i.e. one).  

Another subject which has been noted in neural 
network literature as a decision making parameter about 
network topology [3,4] is the output mapping space. It is 
apparent that the distance between the classes in a four-
dimensional output space is rather greater than the 
distances in a one-dimensional space. This subject may 
be a reason for higher precision in the topology No.3. It 
can be said that this subject is another presentation or 
physical-topological interpretation for fault tolerability 
problem. 

However, another approach to this case is that the 
topologies having less neuron, for the reasons of lower 
dimensions, less weights and smaller optimization space 
may have less local optimums, and consequently easier 
learning. This is an advantage for the first topology.  
Also, requiring a BCD to decimal decoder is a 
disadvantage for second topology. 

Finally, and more important than every theoretical, 
philosophical, and physical interpretation, numerous 
practical experiments show that the third topology (the 
network having four outputs) has better training and 
generalizing performance than both the other networks. 
Having physical interpretation in topology No. 1 is not 
very important. Because, artificial neural networks have 
four major properties of non-linearity, learning ability, 
finding hidden properties of classes and being model 
free. 

In order to make decision on the number of neurons 
in the hidden layer a combination of two famous 
methods: cascade correlation (based on network growth) 
and pruning (deleting weights and neurons having less 
contribution in generating the output) [3,4].  

 
2.2.2 Experimental Results and Observations 

It has been concluded from experimental studies, that 
the optimum neural network is a three layer perceptron 
having two nodes in the input layer, three sigmoid 
neurons in the hidden layer and four sigmoid neurons in 

the output layer. Thus 2×3+3×4= 18 weights and 3+4=7 
biases must be determined.  

Very small dimensions of the finally designed neural 
network with respect to similar networks is 
considerable: it has been reported in a similar 
application [5] 24 for the number of neurons in hidden 
layer, and in another paper [6] seven neurons. Compare 
these with final MLP neural network designed in this 
paper, which has only three neurons in hidden layer. 
Besides, it will be shown that this network has a good 
ability in learning, recalling and generalizing for new 
inputs. 

Three training sets are learnt to the presented neural 
network: decision space samples with uniform 
distribution (Fig. 4 of Part 1), uniform samples which 
are mapped by complex conformal mapping (circular 
space in Fig. 9 of Part 1), and uniform equalized square 
space (Fig. 7 of Part 1). The last one is the data in Fig. 4 
of Part 1, processed by the functions 0 25
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4.

.
,

.

.
× ×P Q . 

The aim of the last mapping is equalizing the sizes of 
the classes and studying the effect of this mapping on 
learning ability of the neural network. From the 
theoretical view point, equalizing sizes of the classes 
may modify the learning of the network because it 
linearizes the classification space. In neural networks, 
which are based on a mathematical model, equalizing 
the sizes of the classes should have positive effect on 
learning of the network. 

Experimental results show the opposite: the first 
series (non-equalized space) with 2520 iterations and 
the second series (equalized space by mapping) with 
2750 iterations reach to the training error of E 0.005Trn = .  

Despite of our conception, not only the performed 
mapping has not any positive effect on the learning of 
the network, but also it lengthens the learning 
procedure. This contradiction has been briefly discussed 
in Appendix 1.  

Also the data having Gaussian distribution (Fig.s 5, 
8, 10 of the Part 1) are tested on MLP network, but their 
learning was not as well as the data having uniform 
distribution. This shows that the MLP networks, 
opposite to the RBF networks, do not need to 
concentrate on class centers. It is better to use the data 
with uniform distribution, or preferably by a 
concentration on boundaries of the classes for MLPs. 
Briefly, “MLP neural networks are bound oriented 
neural networks, and it must be focused on the bounds 
of the classes for training them”. 

About learning factor (or walking size) (α) and 
momentum (β) in error back propagation algorithm, it 
shall be noted that their selection and variations do not 
obey any known rule and it seems to have a fractal 
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behavior. So, they have been varied adaptively in the 
neural network training computer program. α and β 
have had values between 0.9 to 1.1 and 0.7 to 0.95 
respectively. If the momentum is selected much low, 
learning factor can not be increased very much, and 
neglecting this point may cause un-stability 
(divergence) problem in learning program. On the other 
hand, proper increase of the momentum can increase the 
inertia of movement toward global minimum. It rejects 
the effect of transient changes in movement trajectory.  

Another important point is selection of error function 
norm [7], which has a significant role in network 
learning procedure. Note to this lemma that is proved 
mathematically in [8]: 

Lemma 1: Effect of the largest element of a vector 
on the higher order norms of the vector, is greater than 
its effect on the lower order norm. In other words, 
sensitivity of l-p norm with respect to the largest 
element of vector, increases by increasing the order of 
the norm i.e., p. 

This fact has been seen during the neural network 
learning: during the training procedure, several times 
has been seen that despite of decreasing error function 
norm, the maximum of error of samples was increasing. 
This problem generates bad estimations for samples 
related to the maximum error. In such a case, according 
to the above mentioned Lemma 1, the order of the error 
function must be increased. It concludes to decrease in 
both the error function and the samples maximum error. 
Certainly, increasing the order of error function norm 
can cause problems such as program divergence and 
floating point and overflow problems.  

 

3 A Practical Case Study 
Consider the three feeder distribution system of Fig. 

2, having 16 switches and 13 line sections [9].  
 

 
 Fig. 2, Test distribution system 

 
This system has been used for many distribution 

systems studied in literature, especially in IEEE 
Journals. Let us observe the performance of two 
intelligent optimizers, which have been designed in the 

previous sections. In this distribution system, each line 
section is known as a “zone” and a state is assigned for 
each zone as its load level. Thus the three feeder 
distribution system or as we call it “test distribution 
system” has a state vector containing 13 elements.  

 
3.1  RBF Estimator Test 
Gaussian (clustered our centered) distributed data is 

learnt better than uniformly distributed data. So, RBF 
neural network learnt by the Gaussian distributed data is 
tested as the final designed RBF neural estimator:  

Consider two series of measurements for active and 
reactive powers (P and Q) in test distribution system (26 
samples) that are shown in upper part of Fig. 3. None of 
these data have been learnt to the neural network. They 
are new inputs. The training set data are successfully 
taught to the neural network in learning mode. Thus, the 
previously learnt data are not tested in recalling mode, 
because they have been tested successfully in learning 
mode.  

 
3.1.1 RBF Interpolation test:  

The first series (the first 13 samples) belongs to the 
test distribution system operating in normal condition. 
As you see in Fig. 3, the RBF estimator in test for the 
first series has had three mistakes, which shows a 23% 
classification error. It is not a good estimation, so we 
can not be content with it. 
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Fig. 3, RBF estimator test, 

above: real power (+)and imaginary power (o), 
below: desired states (solid line) and estimator output (*) 
 

3.1.2 RBF Extrapolation test:  
The second series belongs to operation of the test 

system in a faulted condition, such as: an unpredicted 
outage, increasing capacitance of the line and then 
abnormal change in the power factor of the line. 

 The data of this series are located out of the classes 
area. Thus, the estimator must estimate the most similar 
class (state) to the input data on the basis of “maximum 
likelihood” or “minimum distance”. This property is 
called as “Extrapolation”. The response of the neural 
RBF estimator is shown in lower graph of the Fig. 3. In 
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this case, there has been two errors that both belong to 
contingency (faulted) condition, i.e. a 15% classification 
error. In latter section it will be shown that the MLP 
estimator has a more significant ability in this 
application. 

 
3.2   MLP Estimator Test  

Here, the MLP neural network, which is trained by 
the non-mapped uniformly distributed data, is tested as 
the best designed MLP neural network. For this 
purpose, two series of data that are measured in the test 
distribution system are used. Similar to the previous 
section, test data are thoroughly new and actual, and 
have not learned to the neural network in learning mode. 
So, the generalization ability of the network will be 
tested. The first series (the first 13 sample) belongs to 
normal operation of the distribution system, and the 
second series (the samples 14 to 26) belongs to a faulted 
condition.  Inputs and outputs of the MLP estimator are 
shown in upper and lower section of the Fig.4, 
respectively. 

 
3.2.1 MLP Interpolation test:  

As you see in Fig. 4, the classification precision for 
the first series has been 100%, i.e. the classification 
error is 0%. It means that the MLP estimator has 
estimated the actual states (classes) for all of new inputs 
correctly.  

 
3.2.2 MLP Extrapolation test:  

About the second series: eight zones -out of 13 
zones- have been affected by fault. Their power factors 
have exceeded from the allowed values. Thus, input 
values of the estimator are out of the classes and the 
estimator must estimate the nearest class to the inputs on 
the basis of maximum likelihood.  
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Fig. 4, MLP estimator test, 

above: real power (+)and imagimary power (o), 
below: desired states (solid line) and estimator output (*) 
 
It is shown in Fig. 4, that all of estimations were 

correct, except one of them, i.e. a 93% classification 
precision or 07% classification error. The input, whose 

state has not been estimated correctly, is a critical case 
that is extra-ordinary, i.e. the case in which the power 
factor of the zone is changed 60%, abruptly. The 
distribution systems experts certify that the probability 
of such an abrupt change in power factor is very low.  

The MLP neural network is an estimator which can 
perform maximum likelihood (or minimum distance) 
estimations for the data out of the classes (extrapolation) 
by a high performance. This property is resulted from 
the neural network generalization (intelligence) ability.  

This important property of MLP estimator is very 
exciting and advantageous in special cases of the power 
systems such as contingency analysis, fault diagnosis 
and fault clearing. This ability has been reported for 
none of the similar systems in the literature [5,6]. 
Hence, you see that the MLP neural network, for the 
application of the decision support to utility 
management automation, acts very stronger than the 
RBF neural network from the both aspects of learning 
and generalization.  

 

4 Conclusion 
• A complete design procedure for two kinds of neural 
networks (MLP and RBF) with several training sets was 
presented and discussed on their various aspects. 
• The finally designed MLP intelligent estimator does 
its job very well. It estimates the states of the test power 
system for two series of measured data. It is a good tool 
for utility management automation system as a decision 
support system (DSS). This subject has been shown in a 
practical example by comparing the estimated states and 
actual states and exposing their equality.  
• The presented MLP neural network has the ability of 
maximum likelihood or minimum distance estimation 
for the data out of the classes (extrapolation).  It is able 
to operate under the crises, fault, and contingency 
conditions. This property is the result of intelligence of 
artificial neural networks. It has not been reported in 
similar papers [5,6]. 
• The presented MLP neural network has much 
smaller dimensions than similar networks introduced in 
literature [5,6]. 
• Equalizing the classification space by nonlinear pre-
processing may have not positive effect on MLP neural 
network training procedure. The reason may be 
disturbing the initial sensitivity factors, which may 
make training worse. This subject has been shown 
experimentally, and interpreted mathematically in the 
Appendix 1.  
• The learning, recalling and generalizing 
(interpolation and extrapolation) ability of the MLP 
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networks is rather better than the RBF, for the 
classification application noted in this paper. In some 
other applications, it has been reported opposite of these 
results [3]. 
• Increasing the order of the network training error 
function (l-p norm) causes to have better control on the 
undesired increasing of maximum training error. It 
increases the sensitivity of the norm to the maximum 
training error [8]. On the other hand, it can make the 
training program unstable, or diverge. There is a trade 
off between these two factors: optimum control and 
stability of the program.  
• Despite of circular shape of the Gaussian function 
cross section in RBF network neurons, transforming the 
rectangular classes to circular classes (by conformal 
mappings in complex plane), does not have any positive 
effects on the neural network training procedure. The 
reason of this may be disturbing the initial sensitivity 
factors and legalized form of original classification 
space.  
• The positive effect of applying random noise to the 
training inputs of the RBF neural network by the “k-
mean clustering technique” was experienced in two 
following cases: 
1. When the training and the error matrix calculation 

have had problems as divide by zero or ill conditioning.  
2. When the learning procedure has been very stupid or 

has been entrapped in local minima. 
• The RBF neural network is a “Center Oriented” 
network from the view point of learning, recalling and 
generalizing.  
• The MLP neural network is a “Bound Oriented” 
network from the view point of learning, recalling and 
generalizing.  
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Appendix 1. Discussion on Equalization 
Contradiction 

Neural networks training, is performed by 
experiencing the training set, and consequently finding 
properties and boundaries of the classes by this kind of 
experience. So, processing the raw data, which are 
obtained from the basic fundaments that induce the 
classes, and is directly derived from the physical nature 
of the problem, may disturb the sensitivity factors. This 
probability will be higher, when the mapping function 
(processing) is non-linear. 

Mathematically, for our special case, we have from 
the first order  approximation of the MacLaurin's series: 

∆ ∆ ∆f p f p p f p df p
dp

p( ) ( ) ( ) ( ) .= + − ≈   (A.1) 

∆ ∆f p Ln pp( ) ( ).( ).= 4 4           (A.2) 
For example, for P1=0.2, P2 = 0.9 and  ∆P = 0.01 :  

∆

∆

f P
f P

(
( )

.

.
.)1

2

0 483
0183

2 64= ≅           (A.3) 

You see, for an equal change of power in two 
various points, induced change in the mapped values is 
very different (by a 2.64 ratio). Meanwhile, if the 
mapping had been linear, this ratio should have been 
unity.  

The reason of this is that the sensitivity factor is not 
constant. It is a linear function of p: 

S PLn PP
f = =4 13863.          (A.4) 

So, sensitivity factor varies between 0 and 1.3863, 
when p varies between 0 and 1 per unit (normalized). 
This subject causes disturbance on the initial sensitivity 
factors of the classes with respect to state variables of 
the system. Consequently, the hidden logic, which 
underlies in the nature (physics) of classification 
problem, disturbs. For this reason, equalization of the 
classification space using a nonlinear mapping has made 
it harder. Further more, a [0  1] normalizing of mapped 
data increases the number of iterations to about 2800 for 
a training error of E 0.005Trn = .  
 


