On Synthesis of Asymptotic Filter Banks
Based on a Generalization of the Tellegen’s Principle

MILAN STORK, JOSEF HRUSAK
Department of Applied Electronics and Telecommunications
University of West Bohemia
UWB, P.O.Box 314, 30614 Plzen
CZECH REPUBLIC

Abstract: - This paper deals with structural properties of a class of asymptotic filters from the filter banks design point of view. It is shown that both, the continuous- and discrete-time lattice filter structures can be derived as a natural consequence of strict causality, minimality and asymptotic stability requirements. An abstract form of classic Tellegen’s relation is introduced and used as a basic design tool expressing the signal energy conservation law for filter state space representations. It is demonstrated that in discrete-time version the resulting asymptotic filter bank structure contains the well known direct FIR filter structure as special case.

Key-Words: - Asymptotic filter, continuous filter, digital filter, energy function, filter bank, Lattice structure, Tellegen’s theorem, wavelets filters.

1 Introduction
Many various structures for implementing filters have been developed. There are basically two, both intrinsically linear, but fundamentally different approaches to the signal filtering. The first one leads to frequency filters. In few last decades the state space filter representations have played the growing role, mainly in context of the stochastic optimal Wiener-Kalman-Bucy filtering. It has been shown in [3] that both the stochastic and frequency filtering techniques have some common roots and can be exposed as special cases of the so called asymptotic filtering design philosophy. In this contribution some fundamental properties and structural features of both the continuous-time and discrete-time asymptotic filter state space representations are studied and used for filter banks design. The goal of the contribution is to show that asymptotic filter banks based on generalized Tellegen’s principle [1] can be derived by a straightforward way from natural requirements of strict causality, energy conservation, asymptotic stability and state minimality.

2 Continuous and discrete-time generalization of Tellegen’s principle
The new concept of asymptotic filtering has been introduced in [3], [4], [5] and [6]. Certainly, any realizable filter has to fulfil some causality and energy conservation requirements. The Tellegen’s theorem is known to be one of the most powerful tools of system analysis and synthesis in electrical network theory. It asserts that Kirchhoff’s laws are sufficient for energy conservation in an electrical network. Let us briefly summarize the essential features of the original version of Tellegen’s theorem [12]. Assume that an arbitrary connected electrical network of b components is given. Let us disregard the specific nature of the network components and represent the network structure by an oriented graph with n vertices and b branches. Let the set of Kirchhoff law constraints be given in a form
$$A i = 0 \quad B v = 0$$
(1)
where A is a node incidence matrix, B is loop incidence matrix, and vectors i and v are defined
$$i = [i_1, i_2, \ldots, i_n]^T \quad v = [v_1, v_2, \ldots, v_n]^T$$
(2)
Let J be the set of all vectors i and V be the set of all vectors v such that i and v satisfy (1). Both the vectors of currents and voltages are elements of a b-dimensional vector space with the inner product. Then the Tellegen’s principle follows from:

Theorem 1. (Classical Tellegen’s theorem - CTT)
If $i \in J$ and $v \in V$ then it holds
$$\forall t : \langle i(t), v(t) \rangle = 0$$
(3)
That is to say J and V are orthogonal subspaces of the Euclidean space E_b. Furthermore J and V together span E_b. Unfortunately, since digital filter networks are not subject to Kirchhoff’s laws, Tellegen’s theorem in its original form does not apply in digital signal processing. It has motivated further research work with the goal to modify it for discrete-time systems [5], [14].

Theorem 2. (Tellegen’s theorem in difference form)
Consider two signal-flow graphs with the same topology. Let N denote the number of network nodes.
The network node variables, branch outputs and source node values in the first network are denoted by w_b, v_{jk}, and x_v respectively and in the second network by w'_k, v'_{jk} and x'_v. Then [2]
\[
\sum_{i=1}^{n} (w_i v'_{jk} - w'_i v_{jk}) + \sum_{k=1}^{n} (w_k x'_v - w'_k x_v) = 0
\]

(4)

It is obvious fact, following directly from the definition of inner product, that relation (10) is just a form of constant energy statement for a class of representations in which elements of a set of voltages and currents have been chosen as state variables, as well as components of a gradient vector of a scalar field in the state space. It is of crucial importance to realize that voltages v_i, v_{2i}, \ldots, v_b and currents i_1, i_2, \ldots, i_s are picked arbitrarily subject only the Kirchhoff current and voltage law constraints. The arbitrariness motivates introducing a group of state- and feedback-transformations on which the proposed generalization of classical Tellegen’s principle has been issued in [12].

\[
\exists \Phi, \exists T, T^{-1}: \exists x = T(x), \bar{u} = \Phi(u, x):
\]

\[
\langle f, (\text{grad } E) \rangle = 0 \iff \langle \bar{\eta}, x \rangle = 0
\]

(5)

Let’s now consider a class of discrete-time finite dimensional internal system representations

\[
x(k+1) = f [x(k)] + w(k),
\]

\[
w(k) = B u(k), \ y(k) = C x(k)
\]

(6)

induced by an external digital filter description. Similarly as in the case of continuous-time systems, a new discrete-time generalization of Tellegen’s principle has been formulated. If any input $u(k)$ and any state value $x(k)$ will be chosen then the next state value $x(k+1)$ is given, and the state difference vector $\Delta x(k)$ can be defined as

\[
\Delta x(k) = x(k+1) - x(k) = \Delta x_k, \ k \in \{0,1,2,\ldots\}
\]

(7)

together with a row vector $\eta(k)$ defined by:

\[
\eta(k) = \frac{1}{2} \langle x(k+1) + x(k) \rangle = \eta_k, \ k \in \{0,1,2,\ldots\}
\]

(8)

Interpretation of the vector η_k as a natural discrete-time energy function gradient vector is obvious, and the discrete-time generalization of Tellegen’s principle is then given by the inner product:

\[
\Delta t_k \equiv t_{k+1} - t_k:\ \forall t \Delta t_k,
\]

\[
\forall t \equiv k, k \in \{0,1,2,\ldots\} : \langle \Delta x_k, \ \eta_k \rangle = 0
\]

(9)

\[
\iff E(t)_{\eta \rightarrow k} = E(t)_{\eta \rightarrow 0} = \text{const.}
\]

For deeper understanding the geometric interpretation of both the continuous and discrete-time versions of the generalized Tellegen’s principle is visualized at the Fig.1.

3 Lattice-ladder structure of continuous-time asymptotic filters

In fact, it follows from the previous analysis that it is not the physical energy by itself, but only a measure of distance from the system equilibrium to the actual state $x(t)$, what is needed. Thus, instead of the physical energy a metric $\rho(x(t), x^*)$ will be defined in a proper way, and for an abstract energy $E(x)$ we then put formally:

\[
E(x) = \frac{1}{2} \rho^2 [x(t), x^*] = \frac{1}{2} \| x(t) - x^* \|^2
\]

(10)

We start with a natural assumption that every real signal must be generated by a realizable system. Let such a system, called signal generating system (SGS), be given in the form:

\[
\Re(S): \dot{x}(t) = A \cdot x(t) + B \cdot u(t), x(t_0) = x^0,
\]

\[
y(t) = C \cdot x(t),
\]

(11)

where the matrices A, B, C are assumed to be known, the input and output signals are supposed to be measured on some given observation time interval, (perhaps with some uncertainty), and the initial state is assumed to be completely unknown. Notice that the state space representation $\Re(S)$ under consideration has the strict causality property. The resulting state equivalent asymptotic filter representation is then specified by the triplex $\tilde{A}, \tilde{B}, \tilde{C}$ as follows:

\[
\tilde{A} = \begin{bmatrix}
-\alpha_1, & \alpha_1, & 0, & 0, & \ldots, & 0, & 0
\\
-\alpha_2, & 0, & \alpha_2, & 0, & \ldots, & 0, & 0
\\
& \vdots & \vdots & \ddots & \vdots & \vdots & \vdots
\\
0, & 0, & 0, & \ldots, & -\alpha_n, & 0, & \alpha_n
\\
0, & 0, & 0, & \ldots, & 0, & -\alpha_n
\\
& \ddots & \ddots & \ddots & \ddots & \ddots & \ddots
\\
0, & 0, & 0, & \ldots, & 0, & 0, & 0
\end{bmatrix}
\]

\[
\tilde{B} = \begin{bmatrix}
\beta_1 \\
\beta_2 \\
\vdots \\
\beta_{n-1} \\
\beta_n
\end{bmatrix}
\]

(12)

\[
\tilde{C}^T = \begin{bmatrix}
\gamma \\
0 \\
\vdots \\
0
\end{bmatrix}
\]

Fig.1. Geometric interpretation of a) discrete-time b) continuous-time generalized Tellegen’s principle (for $n=2$).
It is easy to show that the set of real basic design parameters \(\alpha_i, \gamma, \beta_i \) must satisfy the following fundamental consistency conditions:

1. \(\forall i \in \{1, 2, \ldots, n\} : 0 < \alpha_i < \infty \) \(\iff \) structural asymptotic stability of the asymptotic filter

2. \(\forall i \in \{2, 3, \ldots, n\} : 0 \neq \alpha_i, \gamma \neq 0, \exists i : \beta_i \neq 0 \) \(\iff \) structural minimality (observability & controllability)

of the asymptotic IIR for \(0 < \delta_i < 1 \) \(\Rightarrow \) (\(\Delta_i \neq 0 \)), and of the standard FIR filters for \(\delta_i = 1 \) \(\Rightarrow \) (\(\Delta_i = 0 \))

The derived lattice structure of the discrete-time asymptotic filter in dissipation normal form corresponding to the Eqns. (14) is shown at the Fig. 3. It can be seen that it is exactly the same as the well known dual lattice realization [8] of standard IIR digital filters. An important special case arises if we set \(\delta_i = 1 \) then all the complementary parameters \(\Delta_i \) vanish and the structure of asymptotic filter reduces to the standard dual transversal FIR filter structure [14].

An important special case arises if we set \(\delta_i = 1 \) then all the complementary parameters \(\Delta_i \) vanish and the structure of asymptotic filter reduces to the standard dual transversal FIR filter structure [14].

A lattice-ladder structure of discrete-time asymptotic filters

In discrete-time case we proceed conceptually by exactly the same way as before. The signal generating system (SGS) is now represented by:

\[
\mathcal{R}(S) : x(k+1) = A \cdot x(k) + B \cdot u(k),
\]

The resulting state equivalent asymptotic filter is specified by the triplex \((\tilde{A}, \tilde{B}, \tilde{C})\) as follows:

\[
\tilde{A} = \begin{bmatrix}
-\Delta_1 \cdot \Delta_2 & \delta_1 & 0 & \cdots & 0 & 0 & 0 \\
\vdots & \ddots & \cdots & \vdots & \vdots & \vdots & \vdots \\
-\Delta_1 \cdot \delta_2 \cdot \delta_3 \cdot \Delta_4 & \delta_1 & \cdots & \cdots & \cdots & \cdots & \cdots \\
\vdots & \ddots & \cdots & \ddots & \cdots & \ddots & \cdots \\
\delta_1 \cdot \delta_2 \cdots \delta_n \cdot \Delta_1 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
\gamma \\
0 \\
\vdots \\
0 \\
0 \\
\end{bmatrix}, \quad \begin{bmatrix}
\beta \\
\cdots \\
\beta \\
0 \\
0 \\
\end{bmatrix}
\]

It is easy to show that the set of real basic (direct) design parameters \(\delta_i \) and the set of real complementary (feed-back) parameters \(\Delta_i \) must satisfy the following consistency conditions:

\[
0 < \delta_i \leq 1, \delta_i^2 + \Delta_i^2 = 1, \quad i \in \{1, 2, \ldots, n\}, \quad \delta_n = \gamma,
\]

having important consequences:
minimum number of circuits elements provides design simplicity and reduces cost. Fig. 5 shows the physical structure of an eight-pole low-pass filter prototype.

![Fig. 5. Example of equal-element 8 pole low-pass asymptotic filter](image)

Fig. 5. Example of equal-element 8 pole low-pass asymptotic filter

5.1 Wavelet construction principles

In practical applications of the wavelet transform we only use the expansion coefficients of the signals and thus made the discrete wavelet transform (DWT). The scaling function and the wavelets themselves are not needed. There is also the fact that in most cases we don't start from given scaling functions and wavelets and determine the filter coefficients \(h_0(n) \) and \(h_1(n) \) from there. More often we start with suitable set of coefficients \(h_0(n) \) and \(h_1(n) \) and use them to calculate the DWT. The coefficient sets or filter impulse responses \(h_0(n) \) and \(h_1(n) \) must fulfill the following conditions to be the expansion coefficients of scaling functions and wavelets [7], [8], [9], [10]:

- The filters \(h_0(n) \) and \(h_1(n) \) must set up a filter bank with perfect reconstruction and unambiguous projection.
- The scaling coefficients \(h_0(n) \) must fulfill the scaling condition:
 \[
 \sum_{n=0}^{N} h_0(n) = \sqrt{2} \tag{17}
 \]
- The transfer function \(H_0(z) \) must be regular.

In practical wavelets construction the low-pass impulse response is cut off at sufficient value of \(N \), in order to be able to derive an inverted-time high-pass filter impulse response \(h_1(n) \):

\[
h_1(n) = (-1)^{N-1-n} h_0(N - 1 - n) \tag{18}
\]

From low-pass and high-pass impulse response the scaling and wavelets coefficients can be computed.

![Fig. 6. Frequency response of IIR filter realized by bilinear transformation method.](image)

Fig. 6. Frequency response of IIR filter realized by bilinear transformation method.

5.2 Asymptotic filters discretization

In this part example of discretization technique (bilinear transformation) is presented [11]. The following example of 4-th order continuous-time asymptotic low-pass filter given by the Eqn. (16) for \(n=4 \) and \(\omega_0=1 \) has been considered. The prototype continuous filter transfer function is given by (19):

\[
F(s) = \frac{1}{(1 + 2s + 3s^2 + 4s^3 + 5s^4)} \tag{19}
\]

The bilinear transformation from the \(s \)-plane to \(z \)-plane is known to be given by:

\[
s = \frac{(2/T_s)(1 - z^{-1} - z^{-1})}{(1 + z^{-1} - z^{-1})} \tag{20}
\]

and we get:

\[
H_0(z) = \frac{0.012(1 + 2z^{-1} + z^{-2})^2}{(1-1.36z^{-1} + 0.548z^{-2})(1-0.86z^{-1} + 0.886z^{-2})} \tag{21}
\]

The frequency response of IIR filter realized by bilinear transformation method is shown in Fig. 6.

![Fig. 7. Scaling function (Left). The 7-th order low-pass asymptotic filter impulse response, cut off at N=60.](image)

Fig. 7. Scaling function (Left). The 7-th order low-pass asymptotic filter impulse response, cut off at N=60.

![Fig. 8. Wavelet function. The high-pass impulse response derived from low-pass impulse response, using Eqn. (18).](image)

Fig. 8. Wavelet function. The high-pass impulse response derived from low-pass impulse response, using Eqn. (18).
5.3 Example of wavelet construction

Example of wavelet construction, based on 7-th order asymptotic filter is described [11]. The low-pass impulse response $h_0(n)$, computed from (21), (Fig. 7), was cut off at $N = 60$, in order to able to derive an inverted time high-pass filter by Eqn. (18). The high-pass impulse response $h_1(n)$ is shown in Fig. 8. Impulse response, computed from low-pass and high-pass impulse responses is shown in Fig. 9, corresponding spectrum of the finite impulse response band-pass filter is shown in Fig. 10.

5.4 Two channel filter bank design

A 2-channel filter bank decomposes a signal into two frequency bands enabling to process each signal separately. This decomposition is useful in the areas of image processing, speech coding and also in adaptive filtering. The block diagram of 2-channel filter bank, also called as a quadrature mirror filter bank (QMF) is shown in Fig. 11. The input signal $x(n)$ is decomposed in two frequency bands by means of analysis bank $H_0(e^{j\omega})$ (low-pass filter, order $N-1$) and $H_1(e^{j\omega})$ (complementary high-pass, overlapping filter). The output signals from decomposition filters are decimated. In the synthesis part, the signals are interpolated, filtered by the synthesis filters $G_0(e^{j\omega})$ and $G_1(e^{j\omega})$, and recombined to gain a reconstructed signal. The overlapping feature of the analysis filters enable to use low-order filters at the expense of introducing aliasing. It was shown in [9] that aliasing can be cancelled by proper design of the synthesis filters. The analog filter bank frequency response is shown in Fig. 12, digital filter bank impulse responses in Fig. 13 and digital filter bank frequency responses in Fig. 14, [13].
6 Conclusion
In the contribution a technique of continuous asymptotic filters and filter bank construction using a special class of IIR filters called asymptotic filters has been proposed. Only continuous-time asymptotic filters with minimal number of natural design parameters, (two-dimensional parameter space for any finite filter order n), resulting from the filtering error signal energy minimization have been considered [4], [5], [13]. Simulation experiments confirm the expectation that even for low number of filter parameters the excellent convergence properties of asymptotic filters will give good approximations with the impulse response cut down to the finite length (of reasonable value). The filter banks are described more detailed in [15].

ACKNOWLEDGMENT
This research work has been supported by Department of Applied Electronics and Telecommunication, University of West Bohemia.

References: