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Abstract – During the last decade, speed sensorless field-oriented control of induction motor has given 
a particular attention by researchers worldwide and a great number of papers have been published on 
this issue. In most of them, the authors proposed the speed estimation algorithms based on Kalman 
filter theory, neural networks and model of reference. In indirect vector control strategy, the accurate 
knowledge of the rotor resistance is critical to ensure field-orientation. However, very few papers have 
been published on the simultaneous estimation of the speed and the rotor resistance. 
This paper describes the use of artificial neural networks and neuro-fuzzy networks for the 
simultaneous estimation of the speed, rotor flux and rotor resistance of an induction motor.  This 
achievement is in authors’ opinion a great contribution.  Simulation results showed the effectiveness of 
the proposed schemes. 
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1 Introduction 
Proposed by Blaschke in 1972 [1], Field-
Oriented Control is a powerful control strategy 
that allows the achievements of high 
performance control with induction motor.  The 
field-orientation is obtained by choosing an 
appropriate dq reference frame, with its d-axis 
aligned, and rotating synchronously with the 
rotor flux space vector.  Under this condition, an 
induction motor behaves like a separately 
excited DC motor where the flux and the torque 
are controlled independently.   

Field-oriented control for induction motors is 
now indisputably a standard control technique 
for electric machines.  Adjustable speed drives 
(ASD) based on this technique are available on 
the market from leading drives manufacturers, 
and are the most widely used.  However, these 
equipments require speed sensor providing the 
rotor speed feedback needed for the regulation 

purpose.  This sensor increases the overall drive 
costs. In the last decade, significant efforts were 
made in the field of research on AC drive 
control to eliminate the need for the speed 
sensor.  Speed sensorless field-oriented control 
of induction motor has given a particular 
attention by researchers worldwide and a great 
number of papers have been published on this 
issue [2]. In most of them, the authors proposed 
the speed estimation algorithms based on 
Kalman filter theory [3], model of reference [4] 
and neural networks [5]. 

In indirect vector control strategy, the 
accurate knowledge of the rotor resistance is 
critical to ensure field-orientation. As in the case 
of speed estimation for sensorless operation, 
many papers have been published emphasizing 
on the importance of the online tracking of the 
rotor resistance [6-7].   

The simultaneous estimation of the speed and 
the rotor resistance is claimed by many 
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researchers to be not feasible.  The contrary was 
proven by a study published in 2002 [8], which 
is later confirmed by an other investigation [9]. 

This paper describes the use of artificial 
neural networks and neuro-fuzzy networks for 
the simultaneous estimation of the speed, rotor 
flux and the rotor resistance of an induction 
motor.  This achievement is believed to be a 
great contribution. Simulation results showed 
the effectiveness of the proposed schemes.  A 
comparison between these two artificial 
intelligence techniques regarding the learning 
time and the optimization error is also reported 
in this paper. 
 
 
2 Induction Motor Modeling 
The well-known induction motor mathematical model, 
in space vector notation, established in the stator-fixed 
reference frame is given by the following equations. 
Note that this reference frame is the most suitable for 
the observation of the internal machine variables. 
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Separating the machine variables into their 
real (α) and imaginary (β) parts will result in the 
fifth order induction motor model given by 
equation 6 below.  The load torque is taken as 
unknown perturbation and the coupling between 
the electrical and the mechanical modes is 
considered, which is actually the case for small 
and medium power electrical machines. 
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In (6), the coefficient of dispersion σ is given by: 
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In the case of rotor flux orientation, the rotor 
dynamics are given by the following equations. 

 1mr
sd

r r

Ld I
dt r
ψ ψ

τ τ
= −  (8) 

 ( )
2

mr
sq r r l

r

p Ld FI
dt JL J J
ω ψ ω= − −

pT  (9) 

 m r
e sq

pLT I
L
ψ

=
r

 (10) 

Isd and Isq are respectively the d and q 
components of the stator current space vector in 
the rotor flux coordinate system. 

In sensorless operation, the rotor speed is 
jointly estimated with the rotor flux components 
and the rotor resistance.  With the knowledge of 
the estimated rotor flux, the electromagnetic 
torque is obtained from (10).. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1- Block diagram of IM Sensorless control 
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Figure 1 above gives a block diagram of an 
induction motor driven by a speed sensorless 
field-oriented controller.  Speed, rotor flux 
components and rotor resistance are 
simultaneously estimated online 
 
 
3 IM States & Parameters Estimation 
States and parameters estimation is a part of 
signal processing field, and is used to obtain the 
non-measurable quantities of a given process.  In 
the case of a cage induction motor, these non-
measurable quantities are the rotor variables.   
In this paper, two estimators are presented which 
are respectively based on artificial neural 
network and neuro-fuzzy network. 
 
 
3.1 Artificial Neural Network (ANN) 
Estimator 
It is well-known fact that artificial neural 
networks (ANN) can approximate a wide range 
of nonlinear functions with a high degree of 
accuracy.  Their structures are built up with 
individual processing elements called neurons, 
which are highly interconnected to form layers.  
This high interconnectivity ensures very fast 
parallel computation to be obtained.  Thanks to 
these advantages, ANN solutions have been 
recently suggested for online identification and 
sensorless control of electric drives. 

In this paper, a three layer with one hidden 
layer perceptrons architecture is considered and 
the back-error-propagation algorithm (BEPA) 
was used for its training.  The sigmoid functions 
are used at both the input and the hidden layers 
(Eq. 11), and the linear function is used at the 
output layer (Eq. 12). 
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Fig.2 below gives the structure of the ANN. 
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Fig.2 – Internal structure of the proposed ANN 
 
The principle of the back-error-propagation 
algorithm is adapting the weights wij connecting 
the neuron i to j, in order to minimize the energy 
function E of the error δ between the actual and 
the desired outputs.   
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In (14), µ is the learning rate. 
 
 
3.2 Neuro-Fuzzy Network (NFN) 
Estimator 
Neuro-Fuzzy systems, also known as hybrid 
neural networks, combine the linguistic rule-
based paradigms of fuzzy systems and the 
learning capability of artificial neural systems.  
The neural part of the system is used for signal 
processing, and the fuzzy part is used for 
reasoning task.  This relatively new artificial 
intelligence technique has been given a great 
interest in the engineering community, and 
emerged as a powerful technique for real-time 
online identification and control of nonlinear 
dynamic systems. 

In this paper, a Multi-Outputs Adaptive 
Neuro-Fuzzy Inference System (ANFIS) is 
adopted.  As an example, fig 3 below gives the 
structure of a two-inputs, single output of 
ANFIS.  In our case, the ANFIS has four inputs 
and four outputs. 
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Fig.3 – Internal structure two-inputs, single 

output ANFIS. 
 
 
3.3 Description of the NFN 
Layer 1: In this layer, every node is adaptive 
characterized by a node function which is, 
example for the input x, given (15) below, where 
ai, bi and ci are tuning parameters. 
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Layer 2: Each node in this layer is constant and 
multiplies the incoming signals. 

 ( ) ( )2,i i Ai BiO w x yµ µ= =  (16) 
Layer 3:Each node in this layer is constant and 
defined by the function below. 
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Layer 4: Each node in this layer is adaptive with 
a node adaptive function given below, where pi, 
qi and ri are tuning parameters 
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Layer 5: For this output layer, the output of the 
node is the summation of all the incoming signals. 
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 Simulation Block 
shown in figure 4 below 
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The use of the oganigram 
allows us to draw the state vector graphs [Ids, 
Iqs,Φdr,Φqr,ωr], the rotor resistance, the electromagnetic 
torque and the corresponding errors [6][9][13][14] 
Now, our main objective is to exp
Matlab/Simulink Software package in order to verify 
the effectiveness of the two proposed methods, Neural 
and Neural-Fuzzy Extended Kalman Filter (NEKF, 
NFEKF), for estimating simultaneously the induction 
machine parameters which are : flux, speed and rotor 
resistance. 
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Fig.4 – Simulation global scheme 
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timation of the induction motor internal 
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rrect estimation at the transitory speed. 
ith respect to the ANNs, based on the
opagation method with gradient descent, we 
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lling two data files, the first contain the NN 
puts, which are the real values of the 
rameters, whereas the second present the 
sired output, which are the values estimated 



Finally, the Neuro-fuzzy program consists in loading 
two data files corresponding to inputs and outputs, in 
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model given in (6) is 
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 Conclusion and Perspectives 

s in the 

 

 

magnitude 

addition to running the training through an estimation 
loop which contain, in the first place, the loading of 
the input and output vectors, which are necessary in 
each loop cycle, after that, every vector is divided into 
two equal parts, the first serve like training data, 
whereas the second, serves us like a checking data 
[14] 
 
 
6
First, the induction motor 
computed under Matlab s
this model, the rotor resistance Rr is supposed to 
be variable following the profile given in Fig. 4 
below. It is clear that this scenario of Rr 
variation is the result of authors’ imagination.  
These abrupt variations are used to test the 
convergence of the proposed estimators. 

Simulation results are given below and show 
the effectiveness of ANN and FNN algorith

ultaneous estimation of speed and internal 
variables of an induction motor. 

Fig. 5 gives the actual and the estimated rotor 
resistance. Fig. 6 gives the a

timated rotor angular speed. Fig. 7 gives the 
actual and the estimated rotor flux space vector 
magnitude. These results clearly demonstrate the 
superiority of Fuzzy-Neural Networks over 
traditional Artificial Neural Networks regarding 
the precision of approximation during transients. 
 
 
7
We have presented the application of two 
emerged artificial intelligence technique
estimation of speed and internal variables and 
parameters on an induction motor for sensorless 
operation.  Theses two techniques are artificial 
neural networks and neuro-fuzzy networks. 
Based on the fifth order model, simultaneous 
estimation of the rotational speed, rotor 
resistance and the rotor flux space vector is 
successfully achieved, and this achievement is 
believed to be a great contribution.  As expected, 
simulation results showed the superiority of 
Fuzzy-Neural Networks over traditional 
Artificial Neural Networks regarding the 
precision of approximation during transients. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5 – Actual and estimated rotor resistance 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.6 – Actual and estimated rotor speed 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.7 – Actual and estimated rotor flux 
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