Trellis properties on the tensor product of two lattices*

HAIBIN KAN¹,², XUEFEI LI¹, and HONG SHEN²

¹Graduate School and Information Science
Japan Advanced Institute of Science and Technology
1-1, Asahidai, Tatsunokuchi, Ishikawa, 923-1292, Japan.

²Dept of Computer Science and Engineering
Fudan University, Shanghai, China

Abstract: - Trellis diagrams of lattices and the Viterbi algorithm can be used for decoding. In the paper, we investigate some relations among the trellis diagrams of the lattices L_1, L_2 and $L_1 \otimes L_2$.

Key-Words: - Lattice, Trellis diagrams, Tensor product.

1 Introduction and Preliminaries

It is well known that trellis diagrams can be employed for maximum-likelihood decoding by using the Viterbi algorithm ([2]). The simpler the trellis diagram is, the more efficient decoding is. There are several methods constructing the minimal trellis diagrams for linear codes ([10]). G. D. Forney defined the trellis diagram of lattice in [3] and [4], which can be used for decoding of the code based on lattices. The complexity of the trellis diagram of a lattice is generally measured by the numbers of states, edges and labels at every level. Up to now, no efficient methods are found to construct trellis diagrams with low complexity for a lattice. However, V. Tarokh extensively studied the trellis complexity of lattices in [7], [8] and [9], whose results are profound. After having read Tarokh’s Ph.d thesis, G. D. Forney thought Tensor product would be an important tool in studying the trellis complexity of lattices. For example, we can construct lattices with arbitrary large code gain by tensor product; Some interesting lattices including the Barnes-Wall lattices can be constructed using tensor product. In the paper, we study the trellis relations among lattices L_1, L_2 and their tensor product $L_1 \otimes L_2$.

Denote by R and Z the sets of real numbers and integers, respectively. Let R^n and $R^{m \times n}$ be the set of real n-dimensional column vectors and that of $m \times n$ matrices with elements in R, respectively. All vectors are assumed to be column vectors. For integers x_1, x_2, \ldots, x_i, we use (x_1, x_2, \ldots, x_i) for the greatest common divisor and $[x_1, x_2, \ldots, x_i]$ for the least common multiple of x_1, x_2, \ldots, x_i. A lattice is a discrete and additive subgroup in R^n. Concretely, For any linearly independent vectors $b_1, b_2, \ldots, b_m \in R^n$, $m \leq n$, the set $L = \{ \sum_{i=1}^{m} k_i b_i \mid k_i \in Z, 1 \leq i \leq m \}$ is called a lattice. (b_1, b_2, \ldots, b_m) is called a basis of the lattice L, m the dimension of L. We also use the notations $L(b_1, b_2, \ldots, b_m)$ or $L(B)$ for the lattice L, where the matrix $B = (b_1, b_2, \ldots, b_m)$ is

*This work is supported by NSF of China (No.60003007) and by Japan Society for Promotion of Science (JSPS) Research Grant (No. 14380139)
called a basis matrix of \(L \). If \(m = n \), \(L \) is a full rank lattice. In the paper, we always assume lattices are of full rank. For vectors \(u = (u_1, u_2, \ldots, u_n)^t \), \(v = (v_1, v_2, \ldots, v_n)^t \in R^n \), their inner product is defined as \(\langle u, v \rangle = \sum_{i=1}^{n} u_i v_i \), and \(u \) and \(v \) are orthogonal if \(\langle u, v \rangle = 0 \). Denote by \(\text{span}(b_1, b_2, \ldots, b_m) \) the vector space spanned by the vectors \(b_1, b_2, \ldots, b_m \).

For any subspace \(W \subseteq R^n \), there exists a unique orthogonal complement \(W^\perp \), i.e., \(R^n = W \oplus W^\perp \). Let \(P_W \) be the projection of \(R^n \) in \(W \). This is, for any \(x \in R^n \), \(P_W(x) = w \), where \(x = w + u \), \(w \in W \), \(u \in W^\perp \). Clearly \(P_W \) is linear. The lattice \(L \) has a finite tiling if it has \(n \) pairwise orthogonal elements. Let \(w_1, \ldots, w_n \) be primitive and pairwise orthogonal vectors in \(L \), i.e., \(\langle w_i, w_j \rangle = 0 \) for \(1 \leq i < j \leq n \), and \(L \cap \text{span}(w_i) = L(w_i) \) for \(1 \leq i \leq n \), where \(\text{span}(w_i) \) is the subspace spanned by \(w_i \) and \(L(w_i) \) is the sublattice spanned by \(w_i \). Let \(W_i = \text{span}(w_i) \) and \(V_i = W_i \oplus W_{i+1} \oplus \cdots \oplus W_n \), \(1 \leq i \leq n \). For any subspace \(V \) in \(R^n \), let \(P_V : \Lambda \rightarrow V \) be the projection of \(\Lambda \) in \(V \) and \(L_V = L \cap V \). The space state at time \(i \) is \(\Sigma_i(L) = P_{V_i}(L)/L_{V_i} \), and the label space at time \(i \) is \(G_i(L) = P_{W_i}(L)/L_{W_i} \). For \(x \in \Lambda \), define \(\sigma(x) = (\sigma_0(x), \sigma_1(x), \ldots, \sigma_n(x)) \) and \(g(x) = (g_0(x), g_1(x), \ldots, g_n(x)) \), where \(\sigma_i(x) = P_{V_i}(x) + L_{V_i} \in \Sigma_i(L) \) and \(g_i(x) = P_{W_i}(x) + L_{W_i} \in G_i(L), \) \(1 \leq i \leq n \). A trellis \(T \) for \(L \) under the coordinate system \(\{W_i\}_{i=1}^{n} \) is an edge-labeled directed graph, whose \(i \)-th level nodes are the elements in \(\Sigma_i(L) \), and whose edges from the \(i \)-th level nodes to the \((i+1) \)-th level nodes are \(\{(\sigma_i(x), g_{i+1}(x), \sigma_{i+1}(x))| x \in \Lambda \} \). If we denote by \(W \) the coordinate system \(\{W_i\}_{i=1}^{n} \), then let \(s_i(L, W) = |\Sigma_i(L)| \) and \(g_i(L, W) = |G_i(L)|, e_i(L, W) = |E_i(L)|, 0 \leq i \leq n - 1 \), where \(E_i(L) = \{(\sigma_i(x), g_{i+1}(x), \sigma_{i+1}(x))| x \in \Lambda \} \). Denote by \(N(L, W) \) the number of distinct paths from the initial state to the end state of \(T \). When there is no ambiguity, we simply denote the above notations by \(s_i, g_i, e_i \) and \(N(L) \).

Given two vectors \(v = (v_1, v_2, \ldots, v_m)^t \in R^m, u = (u_1, u_2, \ldots, u_n)^t \in R^n \), define \(v \otimes u \) as \((v_1 u_1, v_1 u_2, \ldots, v_1 u_n, v_2 u_1, v_2 u_2, \ldots, v_2 u_n, \ldots, v_m u_1, v_m u_2, \ldots, v_m u_n)^t \in R^{m+n} \). Call \(v \otimes u \) the tensor product of \(v \) and \(u \). For any real \(a \in R \), define \(a \cdot v = (av_1, av_2, \ldots, av_m)^t \). Sometimes we write \(v \cdot a \) for \(a \cdot v \). It is easy to verify that \((v \cdot a) \otimes u = v \otimes (a \cdot u) \).

Similarly, we define the tensor product of two matrices to be \(B \otimes B' = (b_1 \otimes b'_1, b_1 \otimes b'_2, \ldots, b_1 \otimes b'_n, \ldots, b_n \otimes b'_1, b_n \otimes b'_2, \ldots, b_n \otimes b'_n) \in R^{m \times n \times m \times n'} \), where \(B = (b_1, b_2, \ldots, b_n) \in R^{m \times n} \), \(B' = (b'_1, b'_2, \ldots, b'_n) \in R^{m' \times n'} \). For \(u, v \in R^m \), \(x, y \in R^n \), by the definition of the tensor product of two vectors, we have \((u+v) \otimes x = u \otimes x + v \otimes x, u \otimes (x+y) = u \otimes x + u \otimes y \), and \(\langle u \otimes x, v \otimes y \rangle = \langle u, v \rangle \cdot \langle x, y \rangle \).

Thus for any two lattices \(L_1 \) and \(L_2 \), define the tensor product \(L_1 \otimes L_2 = \sum_{i=1}^{s} v_i \otimes u_i | v_i \in L_1, u_i \in L_2, 1 \leq i \leq s \), \(s \) is an arbitrary positive integer}. Clearly \(L_1 \otimes L_2 \) is a lattice.

2 Trellis relations between the lattices \(L_1, L_2 \) and \(L_1 \otimes L_2 \).

In this section, we investigate the relations of the path numbers, degree numbers and state numbers in trellis diagrams of the lattices \(L_1, L_2 \) and \(L_1 \otimes L_2 \).

Lemma 2.1 [6] Let \(L \in \mathcal{L}_n \) have a finite trellis diagram under the coordinate system \(\{W_i\}_{i=1}^{n} \), where \(L \cap W_i = L(w_i), 1 \leq i \leq n \). Then there exists a basis \((b_1, b_2, \ldots, b_n)\) of \(L \) such that \((w_1, w_2, \ldots, w_n) = (b_1, b_2, \ldots, b_n)P \), where \(P = (p_{ij})_{n \times n} \) is an upper triangular integer matrix. Furthermore, \(p_{ii} \) is the in-degree of any vertex in the \(i \)-th level of the trellis diagram of \(L \) under the coordinate system \(\{W_i\}_{i=1}^{n} \).

It is easy to verify that the former part of the above Lemma is equivalent to lemma 2 of [1], and the later part of the lemma can be found in [6]. So we omit the proof of the above lemma.
Lemma 2.2 Let \(L_1 \subseteq \mathbb{R}^n \) be a lattice with basis \(B = (b_1, b_2, \ldots, b_m) \) and \(L_2 \subseteq \mathbb{R}^{n'} \) a lattice with basis \(B' = (b_1', b_2', \ldots, b_m') \). Then

(1). \(L_1 \otimes L_2 \) is a lattice with basis \((b_1 \otimes b_1', \ldots, b_m \otimes b_m') \), i.e., \(L_1 \otimes L_2 = L(B \otimes B') \).

(2). If \(L_1, L_2 \in \mathbb{L}_n \), then \(L_1 \otimes L_2 \in \mathbb{L}_n \), i.e., if \(L_1 \) and \(L_2 \) have finite trellis diagrams, then so does \(L_1 \otimes L_2 \).

Proof. (1) can be verified directly. (2) is the lemma 5.2 of [7].

Lemma 2.3 Let \(L_1 \) be an \(n \)-dimensional lattice and \(L_2 \) an \(n' \)-dimensional lattice. Then \(\det(L_1 \otimes L_2) = \det(L_1)^n \cdot \det(L_2)^{n'} \).

Proof. Let \(L_1 = L(b_1, b_2, \ldots, b_m) \) and \(L_2 = L(b_1', b_2', \ldots, b_m') \). Since every lattice has a basis with Hermite Normal Form (low triangular matrix), we assume that the matrices \(B = (b_1, b_2, \ldots, b_m) \) and \(B' = (b_1', b_2', \ldots, b_m') \) are matrices with Hermite Normal Forms. Let \(B = (b_{ij})_{n \times n} \), where \(b_{ij} = 0 \) for \(1 \leq i < j \leq n \). Clearly,

\[
B \otimes B' = \begin{pmatrix}
 b_{11}B' & b_{12}B' & \cdots & b_{1n}B' \\
 b_{21}B' & b_{22}B' & \cdots & b_{2n}B' \\
 \vdots & \vdots & \ddots & \vdots \\
 b_{n1}B' & b_{n2}B' & \cdots & b_{nn}B'
\end{pmatrix}
\]

By the definition of the tensor product, \(B \otimes B' \) is a low triangular matrix. Hence \(\det(B \otimes B') = (\det(B))^n \cdot (\det(B'))^{n'} \).

Lemma 5.4 of [7] is a special case of the above lemma. The following two Lemmas can be verified directly.

Lemma 2.4 Let \(A, A' \) and \(Q \) be matrices such that \(A = A'Q \), and \(B, B' \) and \(Q' \) matrices such that \(B = B'Q' \). Then \(A \otimes B = (A' \otimes B')(Q \otimes Q') \).

Lemma 2.5 Let \(S, U \subseteq \mathbb{R}^n \) and \(T \subseteq \mathbb{R}^{m} \) be subspaces, \(L_1 \subseteq \mathbb{R}^n \) and \(L_2 \subseteq \mathbb{R}^{mn} \) be lattices. Then

(1). \(P_{S \otimes T}(L_1 \otimes L_2) = P_S(L_1) \otimes P_T(L_2) \), where \(P_S, P_T \) and \(P_{S \otimes T} \) are the projections in \(S, T \) and \(S \otimes T \), respectively.

(2). If \(S \) and \(U \) are orthogonal subspaces of \(\mathbb{R}^n \), then \(P_{S \otimes U}(L_1) \subseteq P_S(L_1) \oplus P_U(L_1) \), where \(P_{S \otimes U} \) is the projection in \(S \oplus U \).

Proposition 2.6 Let \(T_1 \) and \(T_2 \) be finite trellis diagrams of \(n \)-dimensional lattice \(L_1 \) and \(m \)-dimensional lattice \(L_2 \) under the coordinate systems \(\{ W_i \}_{i=0}^{n-1} \) and \(\{ U_i \}_{i=0}^{m-1} \), respectively, where \(L_1 \cap W_i = L(w_i) \), \(0 \leq i \leq n - 1 \), \(L_2 \cap U_j = L(u_j) \), \(0 \leq j \leq m - 1 \). Let \((a_0, a_1, \ldots, a_{n-1}) \) be a basis of \(L_1 \) and \((b_0, b_1, \ldots, b_{m-1}) \) a basis of \(L_2 \) such that \((w_0, w_1, \ldots, w_{n-1}) = (a_0, a_1, \ldots, a_{n-1})P \) and \((u_0, u_1, \ldots, u_{m-1}) = (b_0, b_1, \ldots, b_{m-1})Q \), where \(P = (p_{ij})_{0 \leq i \leq j \leq n-1} \) and \(Q = (q_{ij})_{0 \leq i \leq j \leq m-1} \) are upper triangular integer matrices. Let \(T \) be the finite trellis diagram of \(L_1 \otimes L_2 \) under the coordinate system \(\{ H_i \}_{i=0}^{n-1} \), where \(H_i = W_\alpha \otimes U_\beta, i = \alpha m + \beta, 0 \leq \beta < m \). Then,

(1). \(N(L_1 \otimes L_2, T) = N(L_1, T_1)^m \cdot N(L_2, T_2)^n \), where \(N(L_1 \otimes L_2, T) \), \(N(L_1, T_1) \) and \(N(L_2, T_2) \) mean the numbers of distinct paths in the trellis diagrams \(T, T_1 \) and \(T_2 \), respectively.

(2). \(d_\alpha^\gamma_i = d_\alpha^\gamma_i \cdot d_\beta^\gamma_i \), where \(0 \leq i < mn \), \(i = \alpha m + \beta \), \(0 \leq \beta < m \), and \(d_\alpha^\gamma_i \), \(d_\alpha^\gamma_i \) and \(d_\beta^\gamma_i \) denote the in-degrees of vertices at the \(i \)-th, \(\alpha \)-th and \(\beta \)-th levels of \(T, T_1 \) and \(T_2 \), respectively.

(3). \(g_i = g_\alpha^\gamma_i \cdot g_\beta^\gamma_i \), where \(0 \leq i < mn \), \(i = \alpha m + \beta \), \(0 \leq \beta < m \), and \(g_\alpha^\gamma_i \) and \(g_\beta^\gamma_i \) denote the orders of label groups at the \(i \)-th, \(\alpha \)-th and \(\beta \)-th levels of \(T, T_1 \) and \(T_2 \), respectively.

Proof. Clearly, \((L_1 \otimes L_2) \cap (W_\alpha \otimes U_\beta) = \) \((L_1 \cap W_\alpha) \otimes (L_2 \cap U_\beta) = L(w_\alpha \otimes u_\beta) \). Since \((w_0, w_1, \ldots, w_{n-1}) = (a_0, a_1, \ldots, a_{n-1})P \) and \((u_0, u_1, \ldots, u_{m-1}) = (b_0, b_1, \ldots, b_{m-1})Q \), \((w_0 \otimes u_0, \ldots, w_{n-1} \otimes u_{m-1}) = (a_0 \otimes b_0, \ldots, a_{n-1} \otimes b_{m-1})P \otimes Q \).
Because the i-th element in the main diagonal of $P \otimes Q$ is $p_{i\alpha}q_{i\beta}$, where $0 \leq i < mn$, $i = \alpha m + \beta$, $0 \leq \beta < m$, so $d_i^+ = d_i^+ \cdot d_i^-$ by the Lemma 2.1. Obliviously,
\[(a_0 \otimes b_0, \cdots, a_{n-1} \otimes b_{m-1}) = (w_0 \otimes u_0, \cdots, w_{n-1} \otimes u_{m-1}) \cdot (P^{-1} \otimes Q^{-1}).\]
For any $0 \leq i < mn$, $i = \alpha m + \beta$, $0 \leq \beta < m$, Since the i-th row of $(P^{-1} \otimes Q^{-1})$ is the tensor product of the α-th row of P^{-1} and the β-th row of Q^{-1}, it is easy to verify that the least common multiple of denominators of the elements in the i-th row of $(P^{-1} \otimes Q^{-1})$ is the product of the least common multiples of denominators of the elements in the α-th row of P^{-1} and in the β-th row of Q^{-1}. Hence, (3) follows from (*). \[\small\]

Remark 2.7 It is also not difficult to prove $d_i^+ = d_i^+ \cdot d_i^-$, where $0 \leq i < mn$, $i = \alpha m + \beta$, $0 \leq \beta < m$, and d_i^+, d_i^+, and d_i^+ denote the out-degrees of vertices at the i-th, α-th and β-th levels of T, T_1 and T_2, respectively.

The result 3 of the above Proposition is in fact Lemma 5.3 of [7], here we deal with it in different view. The following Theorem gives the relation among the numbers of the states in the finite trellis diagrams of the lattices L_1, L_2 and $L_1 \otimes L_2$.

Theorem 2.8 Let T_1 and T_2 be finite trellis diagrams of n-dimensional lattice L_1 and m-dimensional lattice L_2 under the coordinate systems $\{W_i\}_{i=0}^{n-1}$ and $\{U_j\}_{j=0}^{m-1}$, respectively, where $L \cap W_i = L(w_i)$, $0 \leq i < n - 1$, $L \cap U_j = L(u_j)$, $0 \leq j \leq m - 1$. Let $(a_0, a_1, \cdots, a_{n-1})$ be a basis of L_1 and $(b_0, b_1, \cdots, b_{m-1})$ a basis of L_2 such that $(w_0, w_1, \cdots, w_{n-1}) = (a_0, a_1, \cdots, a_{n-1})P$ and $(u_0, u_1, \cdots, u_{m-1}) = (b_0, b_1, \cdots, b_{m-1})Q$, where $P = (p_{ij})_{0 \leq i, j \leq n-1}$ and $Q = (q_{ij})_{0 \leq i, j \leq m-1}$ are upper triangular integer matrices. Let T be the finite trellis diagram of $L_1 \otimes L_2$ under the coordinate system $\{H_i\}_{i=0}^{mn-1}$, where $H_i = W_\alpha \otimes U_\beta$, $i = \alpha m + \beta$, $0 \leq \beta < m$. Denote by s_i', s_i'' and s_i the numbers of states at the α-th, β-th and i-th level of T_1, T_2 and T, respectively. Then,

1. $s_i = (s_i')^m$ if $i = \alpha m + (m - 1)$.
2. $s_i = (s_i')^m \cdot (s_i''^m)$ if $i = 0 \cdot m + \beta$, i.e., $i < m$.
3. $s_i \leq (s_i')^m \cdot (\frac{g_i'}{g_i''})^{\beta + 1} \cdot (s_i''^m)$, where $\alpha \geq 1$, g_i' is the order of the label group at the α-th level of T_1, and d_i^- is the in-degree of any vertex at the α-th level of T_1.

Proof. For any $0 \leq i < mn$, $i = \alpha m + \beta$, $0 \leq \beta < m$, let

$V_i = \text{span}(w_0 \otimes u_0, \cdots, w_0 \otimes u_{m-1}, w_\alpha \otimes u_0, \cdots, a_1 \otimes u_0, \cdots, w_\alpha \otimes u_{m-1}, w_\alpha \otimes u_0, \cdots, w_\alpha \otimes u_\beta)$, $F_\alpha = \text{span}(w_0, w_1, \cdots, w_\alpha)$, $G_\beta = \text{span}(u_0, u_1, \cdots, u_\beta)$.

If $i = \alpha m + (m - 1)$, then $V_i = \text{span}(w_0, w_\alpha) \otimes \text{span}(u_0, \cdots, u_{m-1}) = \text{span}(a_0, \cdots, a_\alpha) \otimes \text{span}(L_2)$. So $V_i \cap (L_1 \otimes L_2) = L(a_0, \cdots, a_\alpha) \otimes L_2$, and $P_{V_i}(L_1 \otimes L_2) = P_{\text{span}(w_0, \cdots, w_\alpha)}(L_1) \otimes P_{\text{span}(L_2)}(L_2) = P_{F_\alpha}(L_1) \otimes L_2$. Therefore, $P_{V_i}(L_1 \otimes L_2)/(V_i \cap (L_1 \otimes L_2)) = (P_{F_\alpha}(L_1) \otimes L_2)/(L(a_0, \cdots, a_\alpha) \otimes L_2)$. Consequently,

$$s_i = \frac{\det(L(a_0, \cdots, a_\alpha) \otimes L_2)}{\det(P_{F_\alpha}(L_1) \otimes L_2)} = \frac{\det(L(a_0, \cdots, a_\alpha))}{\det(P_{F_\alpha}(L_1))}^m = (s_i')^m,$$

and (1) holds.

If $i = 0 \cdot m + \beta$, i.e., $i < m$, then

$V_i = \text{span}(w_0 \otimes u_0, \cdots, w_0 \otimes u_\beta) = \text{span}(a_0 \otimes b_0, \cdots, a_0 \otimes b_\beta)$.

Thus, $V_i \cap (L_1 \otimes L_2) = L(a_0) \otimes L(b_0, \cdots, b_\beta)$ and $P_{V_i}(L_1 \otimes L_2) = P_{\text{span}(w_0)}(L_1) \otimes P_{G_\beta}(L_2)$. So

$$s_i = \frac{|P_{V_i}(L_1 \otimes L_2)/(V_i \cap (L_1 \otimes L_2))|}{(s_i')^{\beta + 1} \cdot (s_i''^m)}.$$
Now, we prove (3). For any $0 \leq i < mn$, $i = \alpha m + \beta$, $0 \leq \beta < m$,

$$V_i = (\text{span}(w_0, \ldots, w_{a-1}) \otimes \text{span}(u_0, \ldots, u_{m-1})) \oplus (\text{span}(w_\alpha) \otimes \text{span}(u_0, \ldots, u_{\beta})) = (\text{span}(a_0, \ldots, a_{\alpha-1}) \oplus \text{span}(b_0, \ldots, b_{m-1})) + (\text{span}(a_\alpha) \otimes \text{span}(b_0, \ldots, b_\beta)).$$

Then $V_i \cap (L_1 \otimes L_2) = L(a_0 \otimes b_0, \ldots, a_0 \otimes b_{m-1}, \ldots, a_{\alpha-1} \otimes b_{m-1}, a_2 \otimes b_0, \ldots, a_\alpha \otimes b_\beta)$.

On the other hand, $P_{V_i}(L_1 \otimes L_2) \subseteq (P_{\text{span}(w_0, \ldots, w_{a-1})}(L_1) \otimes L_2) \oplus (P_{\text{span}(w_\alpha)}(L_1) \otimes L_2)$. Clearly,

$$|P_{V_i}(L_1 \otimes L_2)/(V_i \cap (L_1 \otimes L_2))| \leq |L/(V_i \cap (L_1 \otimes L_2))|.$$

We determine $|L/(V_i \cap (L_1 \otimes L_2))|$ as follows:

Let $L' = L(a_0 \otimes b_0, \ldots, a_0 \otimes b_{m-1}, \ldots, a_{\alpha-1} \otimes b_{m-1}, w_\alpha \otimes b_0, \ldots, w_\alpha \otimes b_\beta)$.

Then $L' = (L(a_0, \ldots, a_{\alpha-1} \otimes L_2) \oplus (L(w_\alpha) \otimes L(b_0, \ldots, b_\beta))$. Since $(w_0, w_1, \ldots, w_{a-1}) = (a_0, a_1, \ldots, a_{\alpha-1})P, |V_i \cap (L_1 \otimes L_2)/L'| = (p_{\alpha})(\beta + 1)$.

Since $|(P_{\text{span}(w_0, \ldots, w_{a-1})}(L_1) \otimes L_2)/(L(a_0, \ldots, a_{\alpha-1} \otimes L_2))| = s'_{\alpha-1})^m$ and $|P_{\text{span}(w_\alpha)}(L_1) \otimes L_2)/(L(w_\alpha) \otimes L(b_0, \ldots, b_\beta))| = g''_\beta^{\beta+1}s''_\alpha$,

$$|L/(V_i \cap (L_1 \otimes L_2))| = (s'_p)^m \cdot (g''_\beta)^{\beta+1}s''_\alpha.$$

So, $|L/(V_i \cap (L_1 \otimes L_2))| = (s'_p)^m \cdot (g''_\beta)^{\beta+1}$. Hence, $s_i = |P_{V_i}(L_1 \otimes L_2)/(V_i \cap (L_1 \otimes L_2))| \leq (s'_p)^m \cdot (g''_\beta)^{\beta+1}$. By the Lemma 2.1, $d_{\alpha} = p_{\alpha}$ and so the proof is finished.

Remark 2.9 V. Tarokh gave a very good upper bound on label complexity function (Theorem 5.1) by Lemma 5.3 of [7]. Theorem 2.8 gives the relations among the numbers of the states at corresponding levels in trellis diagrams of L_1, L_2 and $L_1 \otimes L_2$. Could we give a better upper bound on state and branch complexity functions by Theorem 2.8?

References:

