Data Transfer and Processing in MR Tomography
using Digital Signal Processor

KAREL BARTUSEK*, ZDENĚK DOKOUPIL*, ZDENĚK SMEKAL**, EVA GESCHEIDTOVÁ***

* Academy of Sciences of the Czech Republic, Institute of Scientific Instruments
Kralovopolska 147, 612 64 Brno
CZECH REPUBLIC

** Faculty of Electrical Engineering and Communications
Brno University of Technology
Purkynova 118, 612 00 Brno
CZECH REPUBLIC

*** Faculty of Electrical Engineering and Communications
Brno University of Technology
Kolejni 2906/4, 612 00 Brno
CZECH REPUBLIC

Abstract: - The application of a DSP96002 digital signal processor in measuring and transferring data, setting the pre-emphasis constants, and communicating with the MR tomograph is described in the paper. The application of the digital signal processor represents a modern approach to real-time processing of MR signals. The objective is to obtain distance communication with the tomograph via the Internet.

Key-Words: - Digital signal processor, MR tomograph, fast imaging methods, pre-emphasis filter, gradient controller

1 Introduction
Nuclear magnetic resonance experiments require three mutually orthogonal gradients of magnetic field, $G_z = \delta B_z / \delta z$, $G_y = \delta B_y / \delta y$, $G_x = \delta B_x / \delta x$, which either encode spatial information in tomograph image or they eliminate undesirable effects in one- or two-dimensional spectra [1]. Fast switching of magnetic field gradients is here a major problem, in particular when using fast imaging methods in which very short gradient impulses (< 5 ms) are used, and in localized spectroscopy where spectra are detected from regions that are precisely defined by gradients. In the vicinity of gradient coils, fast changes of the field induce eddy currents in conducting materials which are responsible for the time delay of the change in magnetic field and extend inordinately the time the gradient field takes to settle at the inhomogeneity level of the basic magnetic field of spectrometer (the usual time to obtain steady-state field is > 2 s). Magnetic field therefore changes during the detection of the signal measured, and its spatial distribution also changes. In MR tomography the action of eddy currents is responsible for the geometrical distortion of the image being detected (it is detected from a very inaccurately defined layer) while in spectroscopy (both multi-dimensional and localized) it leads to the appearance of undesirable interference signals in the spectra.

Today it is required that any gradient with an amplitude of more than 100 m/Tm should drop, in less than 100µs, to the inhomogeneity level of the basic field, which in tomography is 3.9 µT/m, in NMR microscopy 15 µT/m, and in spectrometry 2.3 µT/m [2].

One of the methods for eliminating the effect of eddy currents is pre-emphasis compensation [1], [3], [4]. This involves exceeding the current impulse flowing through the gradient coil in a precisely defined multiexponential way, namely such that the gradient magnetic field will drop to zero in less than 100 µs. The exact parameters of pre-emphasis compensation can be established by analysing the measured time course of the decay of gradient magnetic field in the working space [3], [5]. The measuring accuracy must be very high (> 0.1%).

2 Pre-emphasis Filtering
Fig. 1 shows the block diagram of pre-emphasis digital filters and their connection to the model of tomograph magnet [5]. The $P_a(x)$ blocks are referred to as direct
filters, the \(P_{ao}(z) \) blocks as cross filters. The \(H_i(z) \) blocks represent gradient coil transfers while the \(H_{io}(z) \) blocks are cross transfers between individual coils.

![Diagram](image)

Fig. 1 System of pre-emphasis digital filters and its connection to tomograph magnet.

The term ‘ideal state’ will be used to refer to a state when pre-emphasis filters have such parameters that the waveforms of gradient components of magnetic field correspond to their excitation \((g_{x,y,z} = H_{x,y,z}) \) and, at the same time, there are no undesirable changes in the basic field \((\Delta B_0 = 0) \). Under this condition it is possible to determine the transfer characteristic of direct and cross pre-emphasis filters in the form:

\[
P_a = \frac{1}{H_a} = \frac{1}{\sum_{i=1}^{n} A_i \frac{1-D_j}{z-D_j}} = K \frac{(z-D_1)\ldots(z-D_i)}{(z-Z_1)\ldots(z-Z_{i-1})},
\]

(1)

\[
P_{ao} = K \frac{(z-1)\ldots(z-z_1)\ldots(z-z_{1,2,3,\ldots,n})}{(z-p_1)\ldots(z-p_i)\ldots(z-p_{1,2,3,\ldots,n})}.
\]

(2)

where \(K \) is the filter gain, which depends on the values of all constants \(A_k \) and \(D_k \) and \(\alpha \) represents the coordinates \(x, y \) or \(z \). It is obvious that the zeros of pre-emphasis filter \(P_a \) are identical with the poles \(D_k \) of the corresponding direct magnet transfer \(H_a \), and vice versa. If we assume that the magnet transfer function is stable, then for the coefficients \(D_k \) it holds \(0 < D_k < 1 \) (i.e. \(T_k > 0 \)).

The pre-emphasis filter coefficients can be established by measuring the response to the unit step of gradient \(G_a \) and the induction of magnetic field \(B \), with the other two gradients being zero. On this assumption and in keeping with Fig. 1 it holds

\[
B = \alpha G_a P_a H_a + G_a (P_a H_{ao} + P_{ao} H_a),
\]

(3)

\[
\alpha G_a = \alpha G_a P_a H_a + G_a (P_a H_{ao} + P_{ao} H_a).
\]

(4)

By measuring [6] in two mutually opposite thin sections with coordinates \(\alpha \) and \(-\alpha \) we obtain the following system of equations

\[
B(\alpha) = \alpha G_a P_a H_a + G_a (P_a H_{ao} + P_{ao} H_a)
\]

(5)

\[
B(-\alpha) = -\alpha G_a P_a H_a + G_a (P_a H_{ao} + P_{ao} H_a)
\]

(6)

Their solution yields relations for the transfers of pre-emphasis filters \(P_a \) and \(P_{ao} \) in the form

\[
P_{ao} = \frac{1}{H} \left[\frac{P_a}{H} \right] \left[B(\alpha) - B(-\alpha) \right]
\]

(6)

\[
\frac{H - G_a}{P_a} = H - \frac{B(\alpha) - B(-\alpha)}{2\alpha H_a}
\]

(7)

where \(H \) is the image of unit step.

These transfers can be approximated by multiexponential functions and then constants of pre-emphasis filters \(A_k \) and \(D_k \) of direct and cross transfers can be determined.

3 Application of Digital Signal Processor

Prior to determining the pre-emphasis constants it is necessary to measure precisely the time course of gradient magnetic field after the termination of gradient pulse. A new gradient system has been proposed and designed, which solves the complex of the measurement of pre-emphasis constants, their transfer and processing. At the same time it serves to set the basic magnetic field homogeneity, using the matrix shims feeding device, and to perform tomograph measurements. This system is based on the Motorola DSP96002 digital signal processor. This digital signal processor has the dual Harvard architecture with a bus width of 32 bits and operates with floating-point arithmetic. Its parallel operation and high computation power meets the demands of the given application. At the beginning of the NMR experiment the data and the program are transferred via communication channels. After the start, the digital signal processor waits for the arrival of control impulse from the pulse generator and then performs for the required gradient amplitude in real time the pre-emphasis compensation, successively for all the channels whose parameters are saved in its memory. Via 16-bit D/A converters and gradient power amplifiers the output signals excite current impulses into gradient coils. The sampling of gradients has a repetition frequency of 25 kHz. For the sake of precise measurement of pre-emphasis constants the gradient system has been complemented with a fast 12-bit A/D
The high computation power of the digital signal processor has enabled setting the required magnitudes of the gradients, their timing and the calculation of pre-emphasis filtering in four channels in a minimum time of 35 µs so that time intervals can be set with this step. Even shorter times have been achieved since the shortest currently used lengths of gradient impulses range from 0.5 ms to 1 ms. For the application of conventional MR imaging techniques (Spin-echo or Gradient-echo) this step length is sufficient. When the gradient system should be set and started in less than 75 ms. For this purpose it will be necessary to design a new fast communication channel.

4 New Communication Interface for DSP96002

For the purposes of NMR tomography and measuring the gradient field decays a new type of communication between the host computer of the PC AT type and several remote independent Motorola DSP96002 digital signal processors was solved [8], [9], [10]. The aim was to replace the initial Motorola solution of the development system, i.e. PC interface board - Command converter with DSP56001 digital signal processor - target application with DSP96002, by a simpler solution where there is no need to assign always one Command converter to each application with a DSP96002, and to prepare short service routines in order to avoid using the large development environment in mere data transfer. This resulted in not only simplifying the whole instrument but also reducing the cost.

In the new device the option of connecting several applications with DSP96002 to one interface board remains preserved. From the circuit point of view the board comprises these parts: serial-parallel shift register, time base, control unit, signal output drivers DSI- (OSO), DSCK-(OS1), DR and RESET, signal input circuits DSO, (DSI)-OSO, (DSCK)-OS1, and delay unit.

The 16-bit parallel-to-serial shift register converts 8-bit commands or 32-bit data to serial form. Via an output three-state driver with addressing, this information is applied to the DSI-OSO input of the processor. Via the input multiplexer the data are conveyed from the DSO output of the processor to the 16-bit serial-to-parallel shift register, which converts 32-bit data to the parallel form.

The time base, controlled by a crystal oscillator, is the signal source for synchronous serial transfer. It generates groups of eight or sixteen pulses, depending on whether the transfer of a command or data is concerned. These pulses are applied to the two shift registers and, via the output three-state driver with addressing, to the DSCK-OS1 input of the processor.
The DEBUG-REQUEST signal is program-generated and applied, via the output driver with addressing, to the DR input of the processor. The RESET signal is also program-generated and conveyed, via the input driver, to the RESET input of the processor. The control unit decodes the addresses and the other ISA bus signals, and controls the activity of the other circuits on the board. The delay unit is formed by a chain of gates, which delay the clock signal designed for the serial-parallel register by the same time (several tens of ms) as the signal delay during the passage through cable to the digital signal processor and back.

Communication via the debug port of the DSP96002 digital signal processor is sufficiently fast (the clock rate can be set in the range from 0.5MHz to 8MHz along the length of the serial line) and is satisfactory in most applications. The solution described above makes the deployment of DSP96002 cheaper in cases when its communication with a master computer of the type of PC AT is necessary, and it facilitates data transfer in that it is not necessary to use the development environment with every transfer.

5 Conclusion
A simpler gradient controller and a matrix shims feeding device have been developed that ensure the high performance required for modern pulsed gradient MR experiments. Using a DSP96002 digital signal processor, pre-emphasis filtering is performed in four channels in 34 µs/sample, with the gradient magnetic field falling to the level of basic field homogeneity in 0.5 ms. The new Internet communication between the DSP and the control computer with a clock rate of 8 MHz is no limiting factor in measuring the MR of tomograph images.

References:

Acknowledgement
The paper was prepared within the framework of N°IAA2065201 project of the Grant Agency of the Academy of Sciences of the Czech Republic and with the support of the research plan CEZ: J22/98:262200011.