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Abstract: - In this paper we present an extension to the Learning Real-Time A* (LRTA*) algorithm by 
utilizing a color coded coordination scheme. The new algorithm (C3LRTA*) has been applied to solve 
randomly generated mazes with multiple problem solvers. Our work suggests that by using the proposed 
modification, we get an improvement in LRTA*. Multiple agents coordinate their actions by using color code, 
a heritage from those agents, which have previous traversed the current state. We have evaluated this 
coordination scheme on a large number of test cases with random obstacles and varying obstacle ratio. 
Experimentation has shown that C3LRTA* performs better then LRTA*. In addition, an increase in the 
number of agents and/or obstacle ratio, solution quality is improved as compared to LRTA*. 
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1   Introduction 
Searches have been divided into two classes by 
Weiss [8]; offline and online searches. Offline 
search algorithms execute the complete search 
before actually taking a step towards the target. 
However online search algorithms compute a 
plausible next move and then execute the move in 
constant time. Online algorithms such as LRTA* 
typically find solution faster than offline algorithms 
however solution quality may be compromised.  
In case of multiagent searches, where several agents 
are looking for solution, another level of complexity 
is introduced.  These agents can either solve the 
problem independently or else coordinate together to 
improve the efficiency in reaching a common goal 
in previously unseen environment with obstacles.  
The work which is the basis of this paper, has 
demonstrated some exciting results. We have 
observed that as we increase the obstacle ratio our 
proposed algorithm solution quality gets better and 
better as compared to LRTA*. In proposed solution 
agents try to find alternate moves which leads to 
better search space exploration.  
Concerning the structure of the paper, related work 
will be discussed in section 2. Section 3 contains our 
implementation. Section 4 draw a line between 
LRTA* and C3LRTA* scheme. In section 5 
C3LRTA* in randomly generated mazes will be 
described. Section 6 critically analyze the 
performance of C3LRTA* in the randomly 
generated mazes with original LRTA*. Section 7, 8 
states our future work and conclusion respectively. 

 
 
2   Related Work 
Some of the Coordination mechanisms for Real-
Time searches have already been proposed and we 
will discuss few of them. Two organizational 
strategies based on repulsion and attraction, to 
coordinate agents’ move has been proposed in [2]. 
A new coordination strategy based on marking 
agents having visual depth; where agents mark the 
directions in which they move to inform other 
agents about their experiences [7]. 
Gordon and Matley introduce a sparse direction map 
using genetic algorithm to find the path in mazes. 
Maze is divided into sectors each of which contains 
a direction indicator in [15].               
[4] “Developed a cooperative search algorithm that 
introduces competition among agents, just like the 
selection mechanism in genetic algorithm. If an 
agent in a good state with good heuristic value, it 
tends to have more offspring’s in the next 
generation. Knight in [1] illustrates Multi Agent 
Real-Time A* algorithm in which multiple agents 
autonomously and concurrently executes RTA* 
where the look-ahead horizon is set to be 1.  
 A variation of LRTA* is a State Mark Gradient 
having exploration and exploitation phases; agents 
follow the ascending state marks gradient, which 
leads it from the initial state to the goal state 
explained in [14]. 
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3   Test System and Algorithm 
Implementation 
Our simulated environment dynamically generates 
mazes with varying obstacle ratio as well as other 
configuration settings such as starting locations, 
target locations etc. The goal of the agents is to 
cooperatively attempt to find the path to the goal 
state in various random scenarios. 
Agents have been given a visual depth of one state. 
Color code is used for coordinating actions with 
each other. Agent can move in eight directions and 
each direction has an associated color value. Each 
agent takes action based on distance heuristic and 
color code. When Agent reaches the state with a 
specific color value, it chooses the alternate state 
which enhances the space exploration. 
We have conducted 1200 trails on 100 randomly 
generated mazes with a varying obstacle ratio, from 
5% to 55% with an increment of 10%. Statistical 
influence based on experimental results 
demonstrates that using a color coded coordination 
in the LRTA* online search algorithm, the solution 
quality, measured by solution length and algorithm 
runtime, is improved. 
 
 
4   Discussion 
In the learning Real-time A* search agents move 
randomly and no coordination among them exists. 
The theory of multiagent systems proposes that 
agents can better perform by coordinating with each 
other.  
Our work is on using a color coded coordination 
scheme. As more agents are engaged in the search, 
agents update an estimated cost, which, in turn, 
improves the solution quality. 
 
 
4.1   C3LRTA* 
A new color coded coordination scheme has been 
proposed and we have used this technique to solve 
varying size mazes with randomly positioned 
obstacles. Initial position of the agents and target 
will be randomly assigned. Agents can move in 
eight directions including diagonals in the search 
space as shown in figure (1) below.  
Agents have to avoid the obstacles in the 
environment so agents can’t pass through the 
blocked state. Each move in the search space has 
some associated color to represent agents’ action 
from the current state. 
  

 
Figure (1) Agent’s movement towards goal while 

avoiding obstacles at the same time 
 

 As shown in figure (1) Agent A1 moves downwards 
as the minimum heuristic state and put state color as 
red. When A2 reach the same state; assigns the state 
color for right lower diagonal as pink. So both A1 
and A2 choose the different paths towards the goal. 
Depending upon the last agents’ move the color of 
the state will changed accordingly. The minimum 
heuristic states are selected alternatively while 
considering the state color. So agents disperse 
themselves in the search area and explore different 
part of the search space. 
Previously coordination is used for real-time A* 
(RTA*) search and no coordination was proposed 
for LRTA*. This paper makes the following 
contributions:  
• An updated scheme of coordination 
• The original LRTA* does not cater for 
diagonal moves.  
Like the original LRTA*, we also cater for obstacles 
in the search space.   
In addition, in this work, we have created a 
framework and test harness which can be used in 
analyzing online algorithms such as C3LRTA* and 
LRTA* algorithms. 
4.2   Efficiency of C3LRTA* 
Our proposed simulation contains randomly 
generated mazes with all edges having unit cost 
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where environment contains obstacles. The agents 
and target initial states are randomly chosen. Where 
initial state heuristic values are zero and color values 
are white. 
 
 
4.2.1   C3LRTA*  
The C3LRTA* algorithm repeats the following steps 
until one of the problem solver reaches the goal 
state. It builds and updates two hash tables, one 
containing heuristic estimates of the cost and other 
containing the state color from each state in the 
problem space. 
In the following description let i be the current 
position of the problem solver, and h(i) be the 
current heuristic estimate of the cost from i to the 
goal.  
[C3LRTA*] 
Lookahead: 
Calculate f(j) = k(i,j) + h(j) for each neighbor “j” of 
the current node “i” . where h(j) is the current lower 
bound of the actual cost “j” to goal state, k(i,j) is 
edge cost between node “i” and “j”. where “j” 
contains no obstacle. 
Check State Color If White then move to minimum 
heuristic f(j) else move to state pointed by color 
code scheme. 
Update heuristic: 
Update node “i” as follows: 
  h(i) = minj f(j) 
where “j” is non-traversed node. 
Update Color Code: 
Update the color of node “i” as follows: 
Color(i) = Color of Current_Move 
Action Selection: 
 Move to the neighbor “j” that has non-traversed 
minimum f(j) value. Ties are broken randomly. If 
traversed then move to next available f(j) in 
clockwise direction. If no non-traversed move to “j” 
left then start again from best heuristic. Agents try to 
move in a coordinated fashion and heuristic values 
become exact values over repeated trials. 
The original LRTA* algorithm takes O(N3) average 
moves but in this case we need to consider the 
Obstacle avoidance and color Coordination. 
The obstacle and color values are stored in hash 
tables; it takes negligible time and space 
manipulation i.e O(1)  making total of  O(N3 + N + 
N). So for single agent in N state space the learning 
time would be same as O(N3). 
 
 
4.3   Completeness Questioned 
Under what conditions is LRTA* with color code 
coordination guaranteed to eventually find a goal 

state? The original LRTA* has a property that due to 
repeated problem solving trails the heuristic values 
converge to exact values. We have assumed that 
goal state and initial problem solver states are 
assigned randomly. 
We also assume that initial heuristic values are 
admissible and do not overestimate the goal state. 
Ties are broken randomly. 
Theorem 1: C3LRTA* when given an admissible 
heuristic h and the non-traversed node color white. 
The color coordination will disperse agents in search 
space. Eventually C3LRTA* will converge to a final 
solution of the cost O(N3). 
Proof:  Assume the converse, that there exists a path 
to goal state but C3LRTA* cannot reach it. There 
must be a finite cycle that it travels forever. For the 
traversed nodes heuristic and color value are stored 
in a hash table. Considering a single move of an 
agent, it reads the value of its neighbor heuristic and 
current color value, updates both color and heuristic 
values of current node. Any other agent when reach 
to this state try to choose the alternate path so 
maximum space will be explored. In an infinite 
cycle each visit to particular state will increase the 
heuristic value of the node. Similarly each time 
agent selects the next minimum and leaving the few 
choices for others. So at some point, the algorithm 
will leave the cycle and avoid other agents to be 
stuck in similar cycle using color code.  So in a 
finite problem space, every node including goal will 
be visited at most once. When all agents 
cooperatively reached the goal node, algorithm will 
terminate successfully. 
 
 
5   C3LRTA* in random Obstacle 
Mazes 
In our framework multiple agents are trying to find 
the single target through the mazes. 
Agents and target positions is randomly defined.   
The grid space used is of different sizes with 
different ratio of obstacles. Agents can move in 
eight directions including the diagonals. Each agent 
is assigning the state color code according to their 
moves. The previous path traveled is avoided to be 
traverse again. 
Initial heuristic values from the current state to the 
goal are calculated using the Euclidian distance. 
And these values are improved over the time while 
considering the coordination scheme. 
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Figure(2). C3LRTA* Framework 

 
 
6   Performance Analysis  
Performance of both LRTA* and C3LRTA* has 
been evaluated on different mazes with different 
obstacle ratio.  
Both LRTA* and C3LRTA* are run on same 
configuration that is agent positions, target   position 
and obstacle ratio is same. For each obstacle ratio 
we have generated ten different mazes with random 
obstacle positions. For each maze twenty trials are 
run then the average of these trials are taken. 
Average of these 10 mazes is generated against 
same obstacle position.   
Following Table (1) shows the average of 10 mazes 
against obstacle ratio range from 5-55. 
 

LRTA* VS C3LRTA* 
(Solution Length) 

Obstacle 
Ratio 

LRTA* C3LRTA* Percentage 
Improvement 

5 25.86 25.81 0.1937 
15 31.68 31.55 0.4199 
25 26.32 25.76 2.1739 
35 24.42 24.15 1.1180 
45 49.41 47.62 3.7589 
55 156.74 141.56 10.7212 

Table (1) 
 
Results shows that as we increase obstacle ratio 
C3LRTA* outperform LRTA* because of the 
dispersion of agents using color coded coordination. 
Figure (3) shows the comparison of C3LRTA* Vs 
LRTA*. C3LRTA* has gradually improve with 
increasing obstacle ratio. 
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Figure (3) : Obstacle Ratio Vs Solution Length 
 
Figure (4) depicts percentage improvement of 
C3LRTA* over LRTA* with respect to obstacle 
ratio. Performance of C3LRTA* increased as less 
number of available paths to agents.  If the target is 
near to any agent then the expected performance 
will be less as shown in Figure(4) at obstacle 
position 35. 
 

Percentage Improvement Vs Obstacle Ratio

0

2

4

6

8

10

12

5 15 25 35 45 55

Obstacle Ratio

Im
pr

ov
em

en
t

 
Figure (4) : Percentage Improvement Vs 
Obstacle Ratio 
 
We have evaluated both LRTA* and C3LRTA* 
against the optimal moves for various obstacle ratio. 
LRTA* and C3LRTA* performance is same when 
obstacle ratio is less then 15. As we increase 
obstacle ratio LRTA* takes more moves then 
C3LRTA*.  
 

LRTA* Solution VS Minimal Solution 
C3LRTA Solution VS Minimal Solution 

Obstacle 
Ratio 

LRTA* C3LRTA* Minimal 
Solution 

5 18.93 18.92 18.7 
15 22.84 22.73 22 
25 26.37 25.86 23.73 
35 25.6 25.57 20.9 
45 23.41 22.41 18.27 
55 138.38 103.41 35.3 

Table (2) 
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After 40% obstacle ratio there is a major difference 
between C3LRTA* and LRTA* moves. 
Table (2) shows the moves of both algorithms at 
various obstacle ratios. 
We have generated 10 different mazes for same 
obstacle ratio. Afterwards obstacle ratio has been 
increased from 0 to 55 percent. Taking average of 
25 trials for each such maze shows the LRTA* 
number of moves against the optimal moves. 
Figure (5) explains that LRTA* is gradually taking 
the more moves than optimal as obstacle ration 
increased. But after 30% obstacle ratio LRTA* is 
taking considerable more moves than optimal 
moves. 
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Figure (5) : LRTA* Solution Length Vs Minimal 
Length 
 
C3LRTA* is also taking the more moves than the 
optimal moves. If we compare the both algorithms 
than as the obstacle ratio increased C3LRTA* takes 
considerable less moves than LRTA* due to 
coordination. At 55% obstacle ratio LRTA* is 
taking about 140 moves where C3LRTA* takes 
about 100 moves to achieve the target. 
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Figure (6) : C3LRTA* Solution Length Vs 
Minimal Length 
 
Table (3) shows the time taken by both LRTA* and 
C3LRTA* on different mazes. At zero percent 
obstacle ratio both LRTA* and C3LRTA* takes 
equal time but as we start to put obstacle in the 

search space LRTA* takes more time to reach the 
goal state. 
Table (3) shows, as we increase obstacle ratio 
LRTA* takes more time to coverage as compared to 
C3LRTA*. 
 

LRTA* VS C3LRTA 
(Time Taken) 

Obstacle 
Ratio 

LRTA* C3LRTA* Difference 

5 5478 5442 36 
15    6829 6647 182 
25 5475 5355 119 
35 4968 4895 73 
45 5783 5554 229 
55 31573 28536 3036 

Table (3) 
 

Figure (7) shows the comparison graph between 
LRTA* and C3LRTA*. 
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Figure (7) : LRTA* Vs C3LRTA* (Time Taken) 
 
Difference in time between LRTA* and C3LRTA* 
is plotted. Time difference increases as we increase 
obstacle ratio. 
 

 
Figure (8) : Percentage Improvement Vs 
Obstacle Ratio 
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7 Future Work 
This work can be extended in several dimensions. 
One possible extension is for unknown target. 
Agents do not have any information about target 
position in advance, agents coordinating to locate 
the target in search space.  The LRTA* with 
coordination can be implemented in 3D space and 
can also be incorporated with GIS for Missile 
systems to hit the static target. 
Several static and dynamic obstacle detection 
algorithms can be devised for multi-agent LRTA* 
with coordination. 
 
 
8 Conclusion 
We have here presented two innovations in this 
paper. Using C3LRTA* enhances search space 
which leads to improvement in solution quality. In 
addition, LRTA* is a single agent search algorithm. 
We have implemented the LRTA* algorithm to 
work on multiple agents on a randomly generated 
maze with obstacles in search space.  
This work can be regarded as an extension to Mark’s 
strategy and leads to a better exploration of the 
search space in addition to improving the solution 
quality and solution length.  
Experimental results have also shown that proposed 
coordination scheme performs better then LRTA*. 
In addition, our proposed scheme becomes more 
effective as we increase the obstacle ratio in the 
search space. 
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