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Abstract: - Hazard and Operability (HazOp) and Fault Tree Analyses (FTA) are embedded into UML component 
models. The latter are constructed by employing UML's extension mechanisms in conjunction with component-based 
software techniques. Taking an application's safety-related requirements into consideration, the elements of HazOp and 
FTA are defined as component attributes, and assigned to a UML component model, which is collected in a UML 
profile for safety analyses and architectural design. Based on the thus enhanced architecture specification of the UML 
component model, it becomes possible to handle hazard analyses and to model safety mechanisms at the same time. 
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1   Introduction 
Safety analysis ought be on top of the agenda right from 
start, as it is an integral part of a system's design. It is 
addressed by a hazard analysis process. Safety analysis 
teams and engineers produce safety programmes and 
perform various types of hazard analyses using such 
techniques as Hazard and Operability Analysis (HazOp), 
Fault Tree Analysis (FTA), Event Tree Analysis (ETA), 
and Failure Mode and Effect Analysis (FMEA) [7, 14]. 
However, these techniques and methods are usually not 
integrated into the requirements specifications on which 
software architecture design is being based. This makes 
it difficult to ensure that an architecture incorporates 
appropriate safeguards. Architecture is a crucial element 
in the life-cycle of safety-critical systems, as indicated 
by the possibility to provide well-known safety 
mechanisms such as forms of design diversity (e.g., N-
version programming) [13] . For these reasons, and to 
cope with the complexities and safety-related 
requirements of embedded real-time systems, it may be 
beneficial to combine in their development process well-
established hazard analysis techniques with component-
based software engineering which is quite commonly 
used in traditional applications [12]. A good match 
appears to be possible on the basis of the semi-formal 
modeling notation Unified Modeling Language [11]. 
 
Unified Modeling Language (UML) offers an 
unprecedented opportunity to handle both safety analysis 
and architecture design in the development of safety-

critical systems [2, 4, 5]. The language can be used to 
construct software architecture specifications dealing 
with varying levels of modeling abstraction, and to 
visualise and specify both the static and dynamic aspects 
of systems [1, 10]. Its built-in extensibility is a powerful 
feature of UML, providing mechanisms like stereotypes, 
tagged values and constraints with which the semantics 
of model elements can be customised and extended. 
However, safety-related requirements and analyses 
cannot be described directly in original UML. Therefore, 
its extensibility needs to be exploited and a UML profile 
for handling hazard analyses and modeling safety 
mechanisms is to be built. 
 
To this end, the notations and associated techniques of 
UML are to be extended in a way consistent with well-
defined safety-analysis techniques. In this paper, we 
shall consider the Hazard and Operability and Fault Tree 
Analyses, which are known as effective and efficient 
methods of hazard analysis, and present a component-
based way to perform HazOp and FTA on UML models. 
By employing UML's genuine extension mechanisms in 
conjunction with component-based software techniques 
[12], several stereotypes will be defined to incorporate 
inherently safe elements into the framework of UML, 
and collected in a profile aiming to address safety 
analysis and architecture design. The elements in hazard 
analysis techniques are modeled by UML components, 
and safety-related parameters are assigned to 
components as tagged values and constraints. Different 
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sets of parameters are associated to different kinds of 
elements. 
 
The paper is organised as follows. Section 2 gives a 
short overview of the component-based modeling 
technique in order to provide a basic understanding,   
and defines a UML component model for developing 
safety-critical systems, which is a foundation model to 
embed elements of the hazard analysis techniques. After 
this, Section 3 explores component-based HazOp and 
FTA analysis by defining a novel way for architectural 
specifications with UML notations, and an example are 
depicted in Section 4. Finally, Section 5 concludes the 
component-based UML models. 
 
2 A Component-based UML Model 
 
Component modeling deals with three kind of models, 
namely, structural (static) models, behavioural 
(dynamic) models, and functional models. 
 
Structural Models consist of components, classes, and 
their relationships. It represents the static configuration 
of a system through the dependencies and connections 
between components. A component can be regarded as a 
self-contained complex entity consisting of a 
subcomponent, a class, or a family of subcomponents or 
classes, common data, and common methods. Each part 
is linked to its structurally related subcomponents or 
classes defined by some interaction, which eventually is 
connected to the outside world via an interface. The 
component structure is made up of component name, 
subcomponent name, class name, and interaction name. 
Components can be subdivided into basic and composite 
ones: basic components provide simple functionalities, 
and are executed on hardware devices; composite ones 
are needed to build hierarchical structures and require 
other components and connectors. 
 
Behavioural Models are used to describe the dynamic 
aspects of the components, component interaction and 
resource constraints. It can be divided into component-
interaction parts that show the messages (behavioural 
name and/or message argument) sent between 
components (or subcomponents or classes), and state 
transition parts that present the state transitions of each 
component (or subcomponent or class) or the 
interactions between the components (or subcomponents 
or classes). The component behaviour is constructed 
with behaviour name, state name, and action name. 
 
Functional Models specify how operations derive 
output values from input values without regard to the 
order of computations. Components process inputs 
according to their operational specification to yield 

designated outputs. The component function consists of 
function name, input parameters, local variables, output 
parameters, and pre/post-expressions.  
 
The component-based model is defined in UML 
notations as shown in Fig.1, which is described by 
defining the set of stereotypes, Component, Connector, 
Port and Role, Interface and Contract. Component is 
responsible for the functional aspects, while Connector 
is responsible for the control and communication aspects 
of a system. A set of Ports is assigned to Component, 
and Roles are assigned to Connector. These ports and 
roles are the interfaces of components and connectors, 
and obey exactly one protocol which specifies the order 
of incoming and outgoing messages. 
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Fig.1 Component-based UML model 
 
The component-based UML model (CBUM) can be 
formulated by a 7-tuple of the form [3, 8, 9]: 
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3 A Hazard Analysis in Component-
based Architecture Specification 

 
A hazard analysis serves to identify hazards, determine 
their respective causes, evaluate the probability of 
hazards, and to decide on their elimination and 
mitigation. The causes of a hazard are a set of failures in 
a system. Thus, its probability can be calculated with the 
failure probabilities of the architectural elements and the 
failure probability of their execution behaviour. To treat 
the hazard analysis aspects we shall enhance architecture 
specifications with elements of hazard analysis 
techniques, which serve as basis for construction and 
evaluation. The elements of hazard analyses are 
described by UML notations, i.e., the probabilities and 
failure descriptions are part of the UML component-
based model associated to an architectural element. Here 
we integrate Hazard and Operability Analysis and Fault 
Tree Analysis into the UML component-based model. 
 
3.1 UML Component-based Model for HazOp 
 
HazOp is a systematic study of how deviations from the 
design specifications can arise in a system, and whether 
these deviations can result in hazards [7]. The analysis is 
performed using a set of guidewords and attributes. 
 
The recommended first step is to identify system entities 
(elements) and their attributes by examining a 
description of the system considered. The description of 
the system may be the one of the physical or logical 
design. The next step is to apply a number of pre-
determined guidewords to attributes of system elements 
to investigate possible deviations, and to determine the 
possible causes and consequences of these deviations.  A 
guideword describes a hypothetical deviation from the 
normally expected attributes. Driven by these 
guidewords, failure causes and their effects are listed. 
Each relevant guideword is applied to each attribute, to 
carry out a thorough search for deviations in a structured 
manner. The combination of a specific guideword and a 
particular attribute will need interpretation which may be 
different in different situations. Each guideword may 
have more than one interpretation in the context of its 
application to the design representation. There will be 
some of the standard guidewords (e.g.,  No, More of, 
Less of, As well as, Part of, Reverse, More than, Other 
than, etc.)  which do not have meaningful interpretations 
for a particular attribute [6],  some systems thus might 
require the addition of guidewords. 
 
Here we apply HazOp to the UML component-based 
model specification. By analysing model constructs, 
identifying attributes of these constructs, and applying 
guidewords to them, we identify possible deviations and 

define analysis criteria for the constructs, i.e., the 
interpretations of the HazOp guidewords applied to the 
structural elements composite component, component, 
connector, interface and port. In the UML component-
based model, the model is considered as a HazOp entity, 
its composed and associated elements can be defined as 
its HazOp attributes, and the guidewords and their 
interpretations are defined as Tag and TagValues applied 
to these given elements to generate HazOp tables, i.e., 
the checklists containing suggestions of possible 
deviations that drives the analysts' attention during the 
analysis process. 
 
A composite component is constructed by a set of related 
component instances, which expresses the interactions 
with one or more internal or external components. A 
guideword can be used to investigate whether or not an 
entity contains all of the composed elements necessary 
to achieve the design intention of the entity within the 
context of a particular design representation. The 
component may not only generate failure events, it can 
also respond (or not) to failure events generated by other 
components which interface to the component's inputs. 
Therefore, each of the elements associated with the 
component can also be considered as an entity during 
HazOp analysis. Induced by the guidewords of the class 
Connector, each of the HazOp attributes should be 
considered vis-à-vis the connections between the 
components through ports (or interfaces). The 
guidewords of the component-based model and their 
interpretations are shown in Table 1. 
 
The state mechanism of UML can be employed to 
express the dynamic behaviour of components. The 
structural elements Component, Event, ActiveObject, 
State, Transition and Activity can be considered as 
HazOp attributes. The guidewords applied to them are 
shown in Table 2.  
 
3.2 UML Component-based Model for FTA 
 
The construction of a fault tree provides a systematic 
method to analyse and document the potential causes of 
a system failure. The analysis process begins with the 
failure scenario of interest, and decomposes the failure 
into its possible causes. Each possible cause is then 
further refined until the basic causes of the failure are 
understood. A fault tree consists of several levels 
connected in such a way that the top event (hazard) is 
noted at the root of the fault tree. Each event analysed at 
a given level is connected to its causes (subevents) at the 
level just below by various Boolean operators. The 
leaves of the tree are the low-level causes (subevents) for 
the top event, which have to occur in combination 
(corresponding to the Boolean conditions in the tree) to 
trigger the top event. Once a fault tree is constructed, it 
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can be written as a Boolean expression showing the 
specific combinations of identified basic events 
sufficient to cause the undesired top event. 
 
In order to map the fault tree elements onto the UML 
component-based model, which enables to use the fault 
tree to describe the failure behaviours of the component, 
it is needed to define and describe a Stereotype and Tags 
for fault tree elements with UML notations, and to attach 
them to corresponding elements of the UML component-
based model. In the UML component model, a 
component itself may cause failures such as internal 
action or internal fault. In addition, it may also respond 
(or not) to failure events generated by other components 
which interface to the component's inputs. Therefore, it 
is natural to define an attribute of failure events in 
components to express such hazards. These events are 
defined as stereotypes as shown in Fig.2. Components 
exchange messages that may cause failures at receiving 
or sending ports. As in FTA a gate serves as a port 
endowed by logical functions, we defined a set of gate 

stereotypes attaching to ports in UML component 
models. The FTA construct edge serves as link just as 
the concept of connector in UML. Hence, we can also 
define a stereotype Edge, and assign it to Connector. 
Both new stereotypes Gate and Edge are also shown in 
Fig.2. 
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 Fig.2 Fault tree stereotypes 
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Stereotype-events represent events such as equipment 
failures, human errors, software errors, and state 
occurrences. They are likely to cause undesired 
outcomes. There are  Basic Events, i.e., initiating faults 
requiring no further development; Undeveloped Events, 
i.e., events which are not developed further, either 
because this is considered unnecessary, or because the 
information available is insufficient; Conditioning 
Events, i.e., a specific condition or restriction that can 
apply to some type of Boolean operator; Normal Event, 
i.e., one expected to occur as part of normal system 
operation; and Intermediate Event arising from the 
combination of other, more basic events.  
 
Stereotype-gates have Boolean functions attached to 
them. An event is connected to other ones through 
various Boolean operators (gates). There are several 
variations and extensions of the connections: 
AND gate indicating that all influence factors must    
apply simultaneously, i.e., a failure in the top node 
occurs only when all failures in the children nodes occur. 
OR gate indicating that at least one of the influence 
factors must apply to cause the failure, i.e., a failure in the top 
node occurs only when one or more of the failures in the 
children nodes occur. 
Inhibit gate indicating that a failure in the top node 
occurs only when both the failures in the child node 
occur and the condition in the oval is true. 
Exclusive OR gate indicating that a failure in the top 
node occurs only when exactly one of the failures in the 
children nodes occurs. 
Priority AND gate indicating that a failure in the top 
node occurs only when the failures in the children nodes 
occur in a left to right order. 
Voting OR gate indicating that the output event occurs if 
a certain number of the input events occur.  
 
Stereotype-edges connect to a event. Edges must not be 
connected directly to gates or subtree, but only to their 
input or output ports. Ports can be the sources or targets 
of edges just as ordinary fault tree nodes (basic events 
and gates).  
 
4 Example: A Railroad Crossing 
Consider a railroad crossing equipped with a semaphore 
(green/red), which controls the movement of trains, and 
a gate (up/down), which controls road traffic (Fig.3). 
Both devices are controlled by a computer system which 
receives and processes the information related to the 
train position. The semaphore is red and the gate is up in 
the initial state of the crossing. 
 

S e n s o rG a t e

C r o s s in g C o n t r o l l e r

T r a in S e m a p h o r e

S e n s o r

 
Fig.3  A railroad crossing 

To describe the system, a conceptual model needs to be 
constructed by defining a set of classes and components. 
The key consideration in constructing the conceptual 
component model is that it should be a representation of 
the problem domain, rather than a model of a potential 
solution [4]. This means that the aim should be to 
identify the high level concepts within the system and 
the relationships between them. As shown in Fig.4, the 
conceptual model is constructed with the crossing 
controller component that controls train signal actuators 
and gate actuators. To obtain information from the 
environment, the control component utilises a sensor that 
determines the state of the gates, and a sensor that 
detects an arriving train and its progress through the 
crossing. 

C ro ss in gC o n tro lle r

T ra in
S enso rs

G a te
S e nso rs

S e nso rsA ctu a to rs

S ign a ls
red , g re en

G a te s
up , d ow n  

Fig.4 Conceptual model of  the railroad crossing 
 

The behaviour of this model is shown as a sequence 
diagram in Fig.5. When a train approaches a gate, it 
reaches a given distance where a sensor detects its 
approach. Then, the sensor sends an event (approach) to 
the crossing controller which, in turn, causes the actuator 
with two consecutive commands to close the gate and 
display green on the semaphore. After the train has 
passed the gate, a sensor detects the fact and sends an 
event (pass) to the crossing controller, which issues two 
commands to display red on the semaphore and to open 
the gate. 
 

approach

Sensor OutGateCrossingController

pass

open

Train Sensor In Signal

closegreen

red

enter

left

 
Fig.5 Behaviour at the railroad crossing 

 
After building the component model, the hazard 
conditions of the system can be discussed. It is obvious 
that the possible hazards are faulty behaviour of the 
actuators and sensors, such as the signal green shown to 
an arriving train in the crossing when the gates are open 
at the same time. This may be caused by either the 
system giving a green signal in the wrong situation, or 
the system omitting to set the signal to red after the train 
has entered the crossing. 
 
To evaluate the probabilities of undesirable events, an 
effective way is to construct a fault tree for each 
component. For this example, the fault trees are 
constructed with the sensors and actuators as shown in 
Fig.6. The gates component, for instance, contains an 
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output failure port for the open and close action, which 
can be caused either by a failure of the hardware or by a 
failure of the open gates and close gates action. 
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Fig.6 Fault trees of the model’s components 

 
Based on each component's fault trees, the composite 
component fault tree for the railroad crossing control 
system can be constructed as shown in Fig.7. The 
probability of a hazard can be evaluated in the same way 
as for any other fault tree. 
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Fig.7 Fault tree of crossing control system 

 
5   Conclusion 
The handling of safety analysis techniques within the 
software architecture has been explored. For this, a set of 
attributes is defined with UML notations for software 
architecture specifications of embedded real-time 
systems. These notations provide the possibility to 
associate the estimated evaluation properties to the 
architectural elements. This leads to an improved 
possibility of finding out whether future systems will 
meet their safety requirements.  
 
The adaptation of HazOp and FTA to UML component 
models may provide a useful technique of hazard 
analysis, which permits qualitative and quantitative 
analyses at an early design stage, thereby increasing the 
chances to identify critical behaviour to be analysed and 
eliminated in the development stages. It helps to 
systematically identify which hazards and failures are 
most serious, which components are the most critical 
ones or which set of components requires a more 
detailed safety analysis, which consequences of the 
considered deviations are dangerous as well as how far 
these deviations depart from the designers' intentions. 
Furthermore, based on such a safety analysis prevailing 
Safety Integrity Levels can be derived. 
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