
Component-based HazOp and Fault Tree Analysis in
Developing Embedded Real-Time Systems with UML

SHOURONG LU and WOLFGANG A. HALANG

Faculty of Electrical and Computer Engineering
Fernuniversität in Hagen, 58084 Hagen, GERMANY

JANUSZ ZALEWSKI
Department of Computer Science,

 Florida Gulf Coast University, Ft. Myers, FL 33965-6565 USA

Abstract: - Hazard and Operability (HazOp) and Fault Tree Analyses (FTA) are embedded into UML component
models. The latter are constructed by employing UML's extension mechanisms in conjunction with component-based
software techniques. Taking an application's safety-related requirements into consideration, the elements of HazOp and
FTA are defined as component attributes, and assigned to a UML component model, which is collected in a UML
profile for safety analyses and architectural design. Based on the thus enhanced architecture specification of the UML
component model, it becomes possible to handle hazard analyses and to model safety mechanisms at the same time.

Key-Words: - Hazard analysis, software architecture, safety critical system, UML, component, modeling

1 Introduction
Safety analysis ought be on top of the agenda right from
start, as it is an integral part of a system's design. It is
addressed by a hazard analysis process. Safety analysis
teams and engineers produce safety programmes and
perform various types of hazard analyses using such
techniques as Hazard and Operability Analysis (HazOp),
Fault Tree Analysis (FTA), Event Tree Analysis (ETA),
and Failure Mode and Effect Analysis (FMEA) [7, 14].
However, these techniques and methods are usually not
integrated into the requirements specifications on which
software architecture design is being based. This makes
it difficult to ensure that an architecture incorporates
appropriate safeguards. Architecture is a crucial element
in the life-cycle of safety-critical systems, as indicated
by the possibility to provide well-known safety
mechanisms such as forms of design diversity (e.g., N-
version programming) [13] . For these reasons, and to
cope with the complexities and safety-related
requirements of embedded real-time systems, it may be
beneficial to combine in their development process well-
established hazard analysis techniques with component-
based software engineering which is quite commonly
used in traditional applications [12]. A good match
appears to be possible on the basis of the semi-formal
modeling notation Unified Modeling Language [11].

Unified Modeling Language (UML) offers an
unprecedented opportunity to handle both safety analysis
and architecture design in the development of safety-

critical systems [2, 4, 5]. The language can be used to
construct software architecture specifications dealing
with varying levels of modeling abstraction, and to
visualise and specify both the static and dynamic aspects
of systems [1, 10]. Its built-in extensibility is a powerful
feature of UML, providing mechanisms like stereotypes,
tagged values and constraints with which the semantics
of model elements can be customised and extended.
However, safety-related requirements and analyses
cannot be described directly in original UML. Therefore,
its extensibility needs to be exploited and a UML profile
for handling hazard analyses and modeling safety
mechanisms is to be built.

To this end, the notations and associated techniques of
UML are to be extended in a way consistent with well-
defined safety-analysis techniques. In this paper, we
shall consider the Hazard and Operability and Fault Tree
Analyses, which are known as effective and efficient
methods of hazard analysis, and present a component-
based way to perform HazOp and FTA on UML models.
By employing UML's genuine extension mechanisms in
conjunction with component-based software techniques
[12], several stereotypes will be defined to incorporate
inherently safe elements into the framework of UML,
and collected in a profile aiming to address safety
analysis and architecture design. The elements in hazard
analysis techniques are modeled by UML components,
and safety-related parameters are assigned to
components as tagged values and constraints. Different

4th WSEAS International Conference on ELECTRONICS, CONTROL and SIGNAL PROCESSING, Miami, Florida, USA, 17-19 November, 2005 (pp.150-155)

sets of parameters are associated to different kinds of
elements.

The paper is organised as follows. Section 2 gives a
short overview of the component-based modeling
technique in order to provide a basic understanding,
and defines a UML component model for developing
safety-critical systems, which is a foundation model to
embed elements of the hazard analysis techniques. After
this, Section 3 explores component-based HazOp and
FTA analysis by defining a novel way for architectural
specifications with UML notations, and an example are
depicted in Section 4. Finally, Section 5 concludes the
component-based UML models.

2 A Component-based UML Model

Component modeling deals with three kind of models,
namely, structural (static) models, behavioural
(dynamic) models, and functional models.

Structural Models consist of components, classes, and
their relationships. It represents the static configuration
of a system through the dependencies and connections
between components. A component can be regarded as a
self-contained complex entity consisting of a
subcomponent, a class, or a family of subcomponents or
classes, common data, and common methods. Each part
is linked to its structurally related subcomponents or
classes defined by some interaction, which eventually is
connected to the outside world via an interface. The
component structure is made up of component name,
subcomponent name, class name, and interaction name.
Components can be subdivided into basic and composite
ones: basic components provide simple functionalities,
and are executed on hardware devices; composite ones
are needed to build hierarchical structures and require
other components and connectors.

Behavioural Models are used to describe the dynamic
aspects of the components, component interaction and
resource constraints. It can be divided into component-
interaction parts that show the messages (behavioural
name and/or message argument) sent between
components (or subcomponents or classes), and state
transition parts that present the state transitions of each
component (or subcomponent or class) or the
interactions between the components (or subcomponents
or classes). The component behaviour is constructed
with behaviour name, state name, and action name.

Functional Models specify how operations derive
output values from input values without regard to the
order of computations. Components process inputs
according to their operational specification to yield

designated outputs. The component function consists of
function name, input parameters, local variables, output
parameters, and pre/post-expressions.

The component-based model is defined in UML
notations as shown in Fig.1, which is described by
defining the set of stereotypes, Component, Connector,
Port and Role, Interface and Contract. Component is
responsible for the functional aspects, while Connector
is responsible for the control and communication aspects
of a system. A set of Ports is assigned to Component,
and Roles are assigned to Connector. These ports and
roles are the interfaces of components and connectors,
and obey exactly one protocol which specifies the order
of incoming and outgoing messages.

constraints

identifier
non-function
properties

Component identification

Connector

participates
in

forms

exposes

plays

fulfills

determines

uses

functional and
non-functional

constraints

Contract
components
roles
constraints

Component
connectors
ports
interfaces
constraints

behaviour

Role

1..*

identifies

fulfilled by

Pre-defined properties

Port
components
connectors
composite ruls
constraints

Composite-component

<<stereotype>>
in port

<<stereotype>>
out port

<<stereotype>>
in-out port

<<stereotype>>
connectionContract

<<stereotype>>
componentContract

<<stereotype>>
compositeContract

service
Interface

<<stereotype>>
Functionallnterface

<<stereotype>>
Configurationlnterface

Fig.1 Component-based UML model

The component-based UML model (CBUM) can be
formulated by a 7-tuple of the form [3, 8, 9]:

4th WSEAS International Conference on ELECTRONICS, CONTROL and SIGNAL PROCESSING, Miami, Florida, USA, 17-19 November, 2005 (pp.150-155)

3 A Hazard Analysis in Component-
based Architecture Specification

A hazard analysis serves to identify hazards, determine
their respective causes, evaluate the probability of
hazards, and to decide on their elimination and
mitigation. The causes of a hazard are a set of failures in
a system. Thus, its probability can be calculated with the
failure probabilities of the architectural elements and the
failure probability of their execution behaviour. To treat
the hazard analysis aspects we shall enhance architecture
specifications with elements of hazard analysis
techniques, which serve as basis for construction and
evaluation. The elements of hazard analyses are
described by UML notations, i.e., the probabilities and
failure descriptions are part of the UML component-
based model associated to an architectural element. Here
we integrate Hazard and Operability Analysis and Fault
Tree Analysis into the UML component-based model.

3.1 UML Component-based Model for HazOp

HazOp is a systematic study of how deviations from the
design specifications can arise in a system, and whether
these deviations can result in hazards [7]. The analysis is
performed using a set of guidewords and attributes.

The recommended first step is to identify system entities
(elements) and their attributes by examining a
description of the system considered. The description of
the system may be the one of the physical or logical
design. The next step is to apply a number of pre-
determined guidewords to attributes of system elements
to investigate possible deviations, and to determine the
possible causes and consequences of these deviations. A
guideword describes a hypothetical deviation from the
normally expected attributes. Driven by these
guidewords, failure causes and their effects are listed.
Each relevant guideword is applied to each attribute, to
carry out a thorough search for deviations in a structured
manner. The combination of a specific guideword and a
particular attribute will need interpretation which may be
different in different situations. Each guideword may
have more than one interpretation in the context of its
application to the design representation. There will be
some of the standard guidewords (e.g., No, More of,
Less of, As well as, Part of, Reverse, More than, Other
than, etc.) which do not have meaningful interpretations
for a particular attribute [6], some systems thus might
require the addition of guidewords.

Here we apply HazOp to the UML component-based
model specification. By analysing model constructs,
identifying attributes of these constructs, and applying
guidewords to them, we identify possible deviations and

define analysis criteria for the constructs, i.e., the
interpretations of the HazOp guidewords applied to the
structural elements composite component, component,
connector, interface and port. In the UML component-
based model, the model is considered as a HazOp entity,
its composed and associated elements can be defined as
its HazOp attributes, and the guidewords and their
interpretations are defined as Tag and TagValues applied
to these given elements to generate HazOp tables, i.e.,
the checklists containing suggestions of possible
deviations that drives the analysts' attention during the
analysis process.

A composite component is constructed by a set of related
component instances, which expresses the interactions
with one or more internal or external components. A
guideword can be used to investigate whether or not an
entity contains all of the composed elements necessary
to achieve the design intention of the entity within the
context of a particular design representation. The
component may not only generate failure events, it can
also respond (or not) to failure events generated by other
components which interface to the component's inputs.
Therefore, each of the elements associated with the
component can also be considered as an entity during
HazOp analysis. Induced by the guidewords of the class
Connector, each of the HazOp attributes should be
considered vis-à-vis the connections between the
components through ports (or interfaces). The
guidewords of the component-based model and their
interpretations are shown in Table 1.

The state mechanism of UML can be employed to
express the dynamic behaviour of components. The
structural elements Component, Event, ActiveObject,
State, Transition and Activity can be considered as
HazOp attributes. The guidewords applied to them are
shown in Table 2.

3.2 UML Component-based Model for FTA

The construction of a fault tree provides a systematic
method to analyse and document the potential causes of
a system failure. The analysis process begins with the
failure scenario of interest, and decomposes the failure
into its possible causes. Each possible cause is then
further refined until the basic causes of the failure are
understood. A fault tree consists of several levels
connected in such a way that the top event (hazard) is
noted at the root of the fault tree. Each event analysed at
a given level is connected to its causes (subevents) at the
level just below by various Boolean operators. The
leaves of the tree are the low-level causes (subevents) for
the top event, which have to occur in combination
(corresponding to the Boolean conditions in the tree) to
trigger the top event. Once a fault tree is constructed, it

4th WSEAS International Conference on ELECTRONICS, CONTROL and SIGNAL PROCESSING, Miami, Florida, USA, 17-19 November, 2005 (pp.150-155)

http://dict.leo.org/se?lp=ende&p=/se?lp=ende&p=/Mn4k.&search=vis-%E0-vis

can be written as a Boolean expression showing the
specific combinations of identified basic events
sufficient to cause the undesired top event.

In order to map the fault tree elements onto the UML
component-based model, which enables to use the fault
tree to describe the failure behaviours of the component,
it is needed to define and describe a Stereotype and Tags
for fault tree elements with UML notations, and to attach
them to corresponding elements of the UML component-
based model. In the UML component model, a
component itself may cause failures such as internal
action or internal fault. In addition, it may also respond
(or not) to failure events generated by other components
which interface to the component's inputs. Therefore, it
is natural to define an attribute of failure events in
components to express such hazards. These events are
defined as stereotypes as shown in Fig.2. Components
exchange messages that may cause failures at receiving
or sending ports. As in FTA a gate serves as a port
endowed by logical functions, we defined a set of gate

stereotypes attaching to ports in UML component
models. The FTA construct edge serves as link just as
the concept of connector in UML. Hence, we can also
define a stereotype Edge, and assign it to Connector.
Both new stereotypes Gate and Edge are also shown in
Fig.2.

FaultTree Elements UML Element Stereotype Icon

BasicEvent

UndevelopedEvent

IntermediateEvent

NormalEvent

ConditioningEvent

Component

Component

Component

Component

Component

<<BEvent>>

<<UEvent>>

<<IEvent>>

<<NEvent>>

<<CEvent>>

AndGate

ORGate

InhibitGate

ExclusiveORGate

PriorityANDGate

VotingORGage

<<AndGate>>

<<ORGate>>

<<InhibitGate>>

<<EORGate>>

<<PANDGate>>

<<VORGate>>

Port

Port

Port

Port

Port

Port

Edge Connector <<Edge>>

m-n

 Fig.2 Fault tree stereotypes

4th WSEAS International Conference on ELECTRONICS, CONTROL and SIGNAL PROCESSING, Miami, Florida, USA, 17-19 November, 2005 (pp.150-155)

Stereotype-events represent events such as equipment
failures, human errors, software errors, and state
occurrences. They are likely to cause undesired
outcomes. There are Basic Events, i.e., initiating faults
requiring no further development; Undeveloped Events,
i.e., events which are not developed further, either
because this is considered unnecessary, or because the
information available is insufficient; Conditioning
Events, i.e., a specific condition or restriction that can
apply to some type of Boolean operator; Normal Event,
i.e., one expected to occur as part of normal system
operation; and Intermediate Event arising from the
combination of other, more basic events.

Stereotype-gates have Boolean functions attached to
them. An event is connected to other ones through
various Boolean operators (gates). There are several
variations and extensions of the connections:
AND gate indicating that all influence factors must
apply simultaneously, i.e., a failure in the top node
occurs only when all failures in the children nodes occur.
OR gate indicating that at least one of the influence
factors must apply to cause the failure, i.e., a failure in the top
node occurs only when one or more of the failures in the
children nodes occur.
Inhibit gate indicating that a failure in the top node
occurs only when both the failures in the child node
occur and the condition in the oval is true.
Exclusive OR gate indicating that a failure in the top
node occurs only when exactly one of the failures in the
children nodes occurs.
Priority AND gate indicating that a failure in the top
node occurs only when the failures in the children nodes
occur in a left to right order.
Voting OR gate indicating that the output event occurs if
a certain number of the input events occur.

Stereotype-edges connect to a event. Edges must not be
connected directly to gates or subtree, but only to their
input or output ports. Ports can be the sources or targets
of edges just as ordinary fault tree nodes (basic events
and gates).

4 Example: A Railroad Crossing
Consider a railroad crossing equipped with a semaphore
(green/red), which controls the movement of trains, and
a gate (up/down), which controls road traffic (Fig.3).
Both devices are controlled by a computer system which
receives and processes the information related to the
train position. The semaphore is red and the gate is up in
the initial state of the crossing.

S e n s o rG a t e

C r o s s in g C o n t r o l l e r

T r a in S e m a p h o r e

S e n s o r

Fig.3 A railroad crossing

To describe the system, a conceptual model needs to be
constructed by defining a set of classes and components.
The key consideration in constructing the conceptual
component model is that it should be a representation of
the problem domain, rather than a model of a potential
solution [4]. This means that the aim should be to
identify the high level concepts within the system and
the relationships between them. As shown in Fig.4, the
conceptual model is constructed with the crossing
controller component that controls train signal actuators
and gate actuators. To obtain information from the
environment, the control component utilises a sensor that
determines the state of the gates, and a sensor that
detects an arriving train and its progress through the
crossing.

C ro ss in gC o n tro lle r

T ra in
S enso rs

G a te
S e nso rs

S e nso rsA ctu a to rs

S ign a ls
red , g re en

G a te s
up , d ow n

Fig.4 Conceptual model of the railroad crossing

The behaviour of this model is shown as a sequence
diagram in Fig.5. When a train approaches a gate, it
reaches a given distance where a sensor detects its
approach. Then, the sensor sends an event (approach) to
the crossing controller which, in turn, causes the actuator
with two consecutive commands to close the gate and
display green on the semaphore. After the train has
passed the gate, a sensor detects the fact and sends an
event (pass) to the crossing controller, which issues two
commands to display red on the semaphore and to open
the gate.

approach

Sensor OutGateCrossingController

pass

open

Train Sensor In Signal

closegreen

red

enter

left

Fig.5 Behaviour at the railroad crossing

After building the component model, the hazard
conditions of the system can be discussed. It is obvious
that the possible hazards are faulty behaviour of the
actuators and sensors, such as the signal green shown to
an arriving train in the crossing when the gates are open
at the same time. This may be caused by either the
system giving a green signal in the wrong situation, or
the system omitting to set the signal to red after the train
has entered the crossing.

To evaluate the probabilities of undesirable events, an
effective way is to construct a fault tree for each
component. For this example, the fault trees are
constructed with the sensors and actuators as shown in
Fig.6. The gates component, for instance, contains an

4th WSEAS International Conference on ELECTRONICS, CONTROL and SIGNAL PROCESSING, Miami, Florida, USA, 17-19 November, 2005 (pp.150-155)

output failure port for the open and close action, which
can be caused either by a failure of the hardware or by a
failure of the open gates and close gates action.

Sig na ls

H ardw are
D efect

R ed G ree n

A llow
P assage

D eny
Passage

G ates

H ardw are
D efect

O pe n C lose

U p
G ate

D ow n
G ate

Tra inS en sors

H ardw are
D efect

Tra inE nte red T ra inLe ft

L eftE nter

G a te sSe nsors

G ate
U p

G ate
D ow n

H ardw are
D efect

G atesO pe n G a te sC lose

Fig.6 Fault trees of the model’s components

Based on each component's fault trees, the composite
component fault tree for the railroad crossing control
system can be constructed as shown in Fig.7. The
probability of a hazard can be evaluated in the same way
as for any other fault tree.

H ard w a re
D e fec t

D e n y
P assag e

A llo w
P assag e

S ig n a ls
R e d G re e n

H a rd w are
D efe c t

D o w n
G ate

G a te
C lo seO p e n

U p
G a te

C ro ss in g C o n tro l

H ard w are
D efe c t G a te sU p G a teD o w n

G a te sS e n so rs

G ateO p en G a teC lo sed

T ra in S e n so rs

E n te red L e ft

H a rd w a re
D e fec t

T ra in
E n te red

T ra in
L e ft

H ard w a re
D efe c t

G a teC lo se

Fig.7 Fault tree of crossing control system

5 Conclusion
The handling of safety analysis techniques within the
software architecture has been explored. For this, a set of
attributes is defined with UML notations for software
architecture specifications of embedded real-time
systems. These notations provide the possibility to
associate the estimated evaluation properties to the
architectural elements. This leads to an improved
possibility of finding out whether future systems will
meet their safety requirements.

The adaptation of HazOp and FTA to UML component
models may provide a useful technique of hazard
analysis, which permits qualitative and quantitative
analyses at an early design stage, thereby increasing the
chances to identify critical behaviour to be analysed and
eliminated in the development stages. It helps to
systematically identify which hazards and failures are
most serious, which components are the most critical
ones or which set of components requires a more
detailed safety analysis, which consequences of the
considered deviations are dangerous as well as how far
these deviations depart from the designers' intentions.
Furthermore, based on such a safety analysis prevailing
Safety Integrity Levels can be derived.

References:

[1] B.P. Douglass: Real-time UML: Developing Efficient

Objects for Embedded Systems. Addison-Wesley,
2000.

[2] H. Giese, M. Tichy and D. Schilling: Compositional
Hazard Analysis of UML Component and
Deployment Models. Proc. SAFECOMP 2004,
LNCS 3219, pp. 166--179.

[3] D. Garlan: Formal Modeling and Analysis of
Software Architecture: Components, Connections,
and Events. Proc. 3rd Intl. School on Formal
Methods for the Design of Computer,
Communication and Software Systems: Software
Architecture, pp. 1--24, 2003.

[4] R. Hawkins, I. Toyn and I. Bate: An Approach to
designing safety critical systems using the Unified
Modeling Language. Proc. Workshop Critical
systems development with UML, 2003.

[5] B. Kaiser, P. Liggesmeyer and O. Mäckel: A New
Component Concept for Fault Trees. Proc. 8th
Australian Workshop on Safety Critical Systems and
Software, 2003.

[6] S. Kim, J. Clark and J. McDermid: The Rigorous
Generation of Java Mutation Operators Using
HazOp. Technical Report, University of York, 1999.

[7] N.G. Leveson: Safeware: System safety and
computers. Addison-Wesley, 1995.

[8] K.-K. Lau and M. Ornaghi: A Formal Approach to
Software Component Specification. Proc.
Specification and Verification of Component-Based
Systems, 2001.

[9] S. Moschoyiannis and M.W. Shields: Component-
Based Design: Towards Guided Composition. Proc.
of Application of Concurrency to System Design, pp.
122--131, 2003.

[10] Object Management Group: Unified Modeling
Language: Superstructure. OMG document
ptc/2003-08-02, 2003.

[11] Object Management Group: Unified Modeling
Language Specification (1.4). http://www.omg.org,
1999.

[12] C. Szyperski, D. Gruntz and S. Murer: Component
Software --- Beyond Object-Oriented Programming.
2nd ed. Addison-Wesley, 2002.

[13] W. Torres-Pomales: Software Fault Tolerance: A
tutorial. NASA/TM-2000-210616, 2000.

[14] J. Zalewski, W. Ehrenberger, F. Saglietti, J. Gòrski
and A. Kornecki: Safety of computer control
systems: challenges and results in software
development. Annual Reviews in Control 27(1) :23--
37, 2003.

4th WSEAS International Conference on ELECTRONICS, CONTROL and SIGNAL PROCESSING, Miami, Florida, USA, 17-19 November, 2005 (pp.150-155)

	A Hazard Analysis in Component-based Architecture Specificat
	Example: A Railroad Crossing

