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Abstract: - In this paper, we propose a new approach for computing 2D FFT's that are suitable for 
implementation on a systolic array architectures. Our algorithm is derived in this paper from a Cooley 
decimation-in-time algorithm by using an appropriate indexing process. It is proved that the number of 
multiplications necessary to compute our proposed algorithm is significantly reduced while the number of 
additions remains almost identical to that of conventional 2D FFT's. Comparison results shows the powerful 
performance of the new 2D FFT algorithm against the row-column FFT transform 
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1 Introduction 
In recent years there has been a growing interest 
regarding the development of efficient computational 
algorithms for the discrete Fourier transform [1-11]. 
These algorithms must be capable of matching the 
advantages offered by the high speed digital 
computer and the rapid advances in VLSI 
technology. 

The computation of 2D Fourier transform (multi-
dim.FT) is an interesting and challenging problem. 
At the present, the2D.FFT finds its practical 
significance in tomography, image processing, 
computer vision and in nuclear magnetic response 
imaging [3]. It is therefore a powerful tool for 
analyzing and providing a better means of 
understanding 2D signals in the "frequency space". 
However, the 2D FT requires a high amount of 
computations which motivates us to search for 
"efficient" algorithms [4].  

The evaluation of the 2D DFT is based on three 
widely used classes of FFTs. There are the row-
column, the vector radix and the polynomial 
transform FFT [4,5]. We have proposed a new fast 
algorithm for the 2D DFT, in a previous work [11], 
which is presented in a simple matrix form that 
allows straight forward VLSI implementation. 

In this paper, we present a radix-2 fast algorithm 
for the computation of the 2D DFT that is based on 
the same ideas of [11]. We will analyze the 

computational complexity and relations of our new 
algorithm against well-known 2D FFT conventional 
algorithms.  
 
 
2 Proposed Algorithm for the 2D 
Discrete Fourier Transform 
In the following sections, we will present a fast 
algorithm that is developed for computing the 
discrete Fourier transform of a two-dimensional data 
set with N points along each array, where N is an 
arbitrary integer. The usual method of computing 
this DFT (N,2) is by performing 2N  distinct 1D DFT 
(N,1) computations [1]. An algorithm based on new 
ideas of reference [11] has been constructed. We will 
show that the new algorithm will have a butterfly 
structure. We also give a count of the number of 
arithmetic operations which this algorithm uses and 
compare it with that of traditional methods. 

The two-dimensional DFT transform (2D DFT)  
of x(k1,,k2) is defined as: 
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where nj ∈[0,N-1] and WN=exp(-j2π/N) 
or in a matrix form as [4]: 
 

X=WN
2 x            (2) 
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The basic matrix WN

2 (N2×N2) is generated by a 
Kronecker product of the matrix WN [6] 
 

WN
2=WN ⊗ WN         (3) 

 
The direct computation of N2  points 2D DFT of 

equation (2) requires: N4 complex multiplications, 
N2(N2-1) complex additions and 2N2  loads and 
stores. The usual methods used to reduce this amount 
of computations are row-column methods [4,7,8]. 
 
 
2.1 Traditional method for the computation 
of the 2D DFT 
The usual way to compute this 2D DFT  N  points is 
by  performing the  computation  of  2N  distinct 1D 
DFT N points [4,8]. By applying the separability 
principle to equation (1), we get the equation that 
define the traditional method of computing the 2D 
DFT. 
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This method calls for 2 equations, each of which 
can be done with N 1D DFTs. Thus, the total number 
of 1D DFTs necessary to compute the entire 2D DFT 
is 2N and the total number of complex operations is: 
O2=2N Ou, where Ou  is the number of complex 
operations required to compute a 1D DFT. If  a 
radix-2 1D FFT is used, then the number of complex 
multiplications necessary for the entire 2D DFT is 

( )N N2
2 1log − and the number of complex additions 

is 2 2
2N Nlog . 

We will see later that our constructed algorithm 
can actually reduce significantly this considerable 
amount of computations. 
 
 
2.2 The proposed radix-2 2D FFT 
The same ideas of reference [11] are used in this 
paper to derive this radix-2 proposed algorithm. The 
proposed algorithm combines the advantages of the 
Cooley-Tukey method, the Kronecker product and 
an efficient indexing process to give an optimal 2D 
FFT algorithm expressed in a simple matrix form. 
The recursive equation for this radix-2 decimation-
in-time two-dimensional algorithm is: 
 

Vi =W2
2D2

2Vi-1                        (5) 

where  
 
• Vi (m) = Vi (m1, m2)=Xi(p1+m12r-i, p2+m22r-i) 

• Vi-1 (k) = Vi-1 (k1, k2)=Xi-1(p1+k12r-i, p2+k22r-i) 

• D2
2 is an (22×22 ) diagonal matrix whose elements 

are given by: 
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• N=2r; i=1 to r; pj=0 to N-1 except pj+2r-i, j=1 to 
2. 

• pj=(pj)r-1..... (pj)r-i..... (pj)0, m=m1m2 , k=k1k2 ,  
(m,k)∈[0,22-1] 

• The digits (pj)i, mj  and kj  take the values 0, 1. 
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• The matrix W2
2  is obtained from equation (12) by 

replacing B with 2: 
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This matrix is known as Hadamard matrix of 
dimension 22 and is denoted H2

2, so we have:  
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j
2 2 2 2

1

2
2 1 2= ⊗ ⊗− −

=
∏               (9) 

with: 

H2

1 1
1 1

=
−

⎡

⎣
⎢

⎤

⎦
⎥  

Thus, 

H22

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

=
−

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

−

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

.
          (10) 

 
This matrix; subject of many investigations [9], finds 
also its importance as a basic matrix for our new 
radix-2 2D FFT algorithm. We can easily see that the 
matrix of equation (10) consists only of zeros and ±1 
elements. So, only complex additions are introduced 
by this matrix in the computation of equation (7). 
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Therefore, the total number of operations necessary 
to perform our radix-2 2D FFT  is: 
 

2N2log2N  complex additions  
and  
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 complex multiplications  
 
 
3 Comparison Between the New 2D 
FFT Algorithm and Traditional 
Algorithms 

 
The main critirium that can be used to compare 
between 2D FFT algorithms is the computation 
speed which is strongly dependent on the number of 
operations involved in each algorithm. Table 1 
presents a comparison between the 2D DFT, the 
traditional 2D FFT and the new 2D FFT in the sens 
of number of operations involved and when we 
transform an two-dimensional data set with N points 
along each array. 

The new 2D FFT has properties such that the 
number of multiplications necessary to compute the 
2D DFT is significantly reduced while the number of 
additions, for most cases, remains at the same level 
as traditional methods. 
 
Table 1  Comparison between the proposed 
 2D FFT algorithm and traditional algorithms. 
 

 2D DFT Traditional 

method 

Proposed 

algorithm 

  1D radix-2 

FFT 

radix-2 2D 

FFT 

Number of 

Complex 

additions 

N2(N2-1) 2N2log2N 2N2log2N 

Number of 

complex 

multiplications 

N4 N N2
2 2

log
 ( )1log

4
3

2
2 −NN

 

 
 
 
4 Conclusion 
A new radix-2 algorithm for computing two-dimensional 
decimation-in-time DFT's has been proposed, and its 
advantages relative to the standard row-column FFT 

algorithms has been demonstrated. The proposed 
algorithm combines the advantages of the Cooley-Tukey 
method, the Kronecker product and an efficient indexing 
process to give an optimal 2D FFT algorithm expressed in 
a simple matrix form. This has resulted in a substantial 
computational savings compared to standard row-column 
FFT algorithms. Furthermore, this matrix form of the 
algorithm can lead to systolic array implementation in a 
forward manner. 
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