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Abstract: - The paper proposes a model that relieves the characteristics of the patient evolution in SEPSIS as 

the result of correct or corrupted information transfer as the cell level, using for this aim methods which are 
specific for studying complex systems: nonlinear dynamics, statistical methods, data transmission and network 

theory. We place particular emphasis on network theory and its importance in augmenting the framework for 

the quantitative study of complex systems. Specifically, we discuss issues, arising from network theory, in our 
understanding the structure of cellular signaling networks involved in SEPSIS phenomena. Finally, we discuss 

the possibility to implement two simulation mechanisms, one based on autonomous (multi)agent blackboard 

architecture, for modeling intracellular communication, the other, based on small-world or even scale-free 
networks, for modeling intercellular communication. 

 

Key-Words: - complex systems, sepsis, cellular signalling, intracellular / intercellular communication, 

biological networks 

 

1 Introduction 
What do metabolic pathways and ecosystems, the 
Internet or patient evolution in SEPSIS have in 

common? Until a few years ago, the answer would 

have been very little. The first two examples are 
biological and shaped by evolution, the third is a 

human creation, and the fourth, yet not explained, 

seems to be a complex mixture of biology, 

chemistry, genetics and immunology.  However, in 

the last few years the answer that has emerged is that 

they all share similar network architectures, typical 

for complex systems. . 

A common idea of complexity is that complex 

things have a long complicated history, and that 
complexity must be understood in the context of 

processes in Nature generating systems with more 

parts, different parts, and special relations between 
various kinds of parts, forming a structure which 

must be described on several distinct levels of 

organization and as involving entities with emergent 
properties. There are many tools that can be used in 

Complex Systems research (including the study of 

non-linear dynamical systems, chaos theory, 

Artificial Life, cellular automata, etc.). Based on 

complex dynamic systems a lot of research from the 

perspective of natural science endeavours to 

investigate self-organizing systems, co-operative 

behavior of agents, and non-linear dynamical 

systems creating emergent properties during their 

time evolution. One can consider that this category 
includes also processes where the transfer of 

information between many individuals is capital, and 

in particular cellular communication processes in 
human body.   

 

 

2 Cellular signaling 
Cells face a steady input of signals. All cellular 

decisions, like survival or apoptosis (cellular 

suicide), proliferation or secretion of certain 

compounds are governed by this complex pattern of 

inputs (or lack thereof). Obviously, the cell needs a 

way to map the set of inputs to the set of possible 
responses, weighting and integrating the different 

inputs in their context. It has to be possible for the 

cell to adapt to the multitude of exterior 
environments. Therefore the signaling network has 

to be robust, that means it may not fall apart because 

if minute changes in some parameter. To achieve 
this, differing levels of exterior have to be translated 

into one cellular state, which may change to another 

one on a certain threshold in the signal. This many-

to-one mapping is an essential ingredient in life. This 

integration is the product of mechanisms on at least 

three levels: 

1. the set of receptors, which act as a first signal 

filter; 
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2. the transduction pathways hooked up to them 

and their interaction, which may act as a 

complex switching network  

3. the regulatory region on the DNA, which acts as 

a regulatory program for transcription factors. 
The structure and dynamics of biological and 

technical networks have become a major topic of 

scientific research recently. The focus in biological 
network research so far has been mainly on 

intracellular networks, e.g. metabolic networks [1], 

gene-regulatory networks [2], or networks of 

protein-protein interactions [3]. What has not been 

taken into account yet is the humoral network of 

intercellular communication, which links 

intracellular signaling networks of different cells 

and cell types. Cells communicate in various ways. 

In this work, we concentrate on humoral 

communication through cytokine messengers in the 
human body in general and in a SEPSIS state 

especially.  The related substances act as first 

messengers and thus are released from specific cells 

to regulate functions in distant target cells by binding 

as ligands to specific receptors. Upon binding to its 

receptor ligands activate intracellular second 

messenger systems which finally lead to changes in 

cellular function and/-or structure. 

 

3 Modeling cellular communication 

systems 
The evolution in every biological phenomenon, 

including SEPSIS, can be considered as a result of 

information transfer in a complex cellular/molecular 

communication system.  Although molecular biology 

is mainly focused on identification of genes and 

functions of their products, which are components of 

the system, the major challenge in analysing sepsis is 

to understand at the system level the biological 

system within a consistent framework of knowledge 
built up from the molecular level to the functional 

system level – not only gene networks, but also 

protein networks, signaling networks, metabolic 
networks and specific systems such as the immune 

system.  At a very abstract level, a cell can be 

divided into two general subnetworks, a regulatory 
network and a metabolic network. These networks 

possess very different characteristics. The metabolic 

network is mainly occupied with substance 

transformation to provide metabolites and cellular 

structures. The regulatory network’s main task is 

information processing for the adjustment of enzyme 

concentrations to the requirements of variable 

internal and external conditions. This network 

involves the use of genetic information. Table 1 

present a short description of the characteristics of 

such networks. 

 

Table 1. Comparison between cellular networks 

 
Cell 

Network 
Task Examples 

Metabolic 

pathway 

Enzyme reactions 

on chemical 

substances 

Intermediary / 

Secondary / 

Macromolecular  

Metabolism 

Regulatory 

pathway 

Macromolecular 

interactions.  Direct 

protein-protein 

interactions and 

gene expressions 

Membrane 

transport, signal 

transduction, 

ligand-receptor 

interaction, cell 

cycle, cell death 

 

The complex network of biochemical 

reaction/transport processes and their biochemical 

spatial organization make the development of a 

predictive model of living cell a “grand challenge” 

problem. Cell signaling, cell motility, organelle 
transport, gene transcription and translation, 

morphogenesis and cellular differentiation cannot 

easily be accommodated into existing computational 

frameworks. Conventional approaches using the 

numerical integration of continuous, deterministic 

rate equations can provide useful when systems are 

large or when molecular details are of little 
importance. However when the resolution of 

experimental techniques increases, conventional 

models become unwieldy. Difficulties include the 
importance of spatial location within the cell, the 

instability associated with reactions between small 

numbers of molecular species and the combinatorial 
explosion of large numbers of different species. One 

of the first used in model molecular interactions were 

the stochastic methods. In the stochastic modeling 

approach, rate equations are replaced by individual 

reaction probabilities and the output has a physically 

realistic stochastic nature. But in the cell, various 

components interact in diverse manners. All cellular 

subsystems are highly nonlinear, and subsystem 

couplings are often nonlinear as well. This 
nonlinearity indicates that the whole system is not 

equivalent to the sum of its subsystems. Cell 

simulators must therefore allow simulation of cell 
subsystems in both isolated and coupled forms. To 

simulate coupled subsystems, it is necessary to 

perform computations on mutually interacting 
subsystems with different computational properties 

on a single platform. There is, however, no universal 

algorithm that can efficiently simulate all subsystems 

at once, so simulators must allow multiple 

computation algorithms to coexist in a single model.  
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4 The modeling framework for 

SEPSIS 
Clearly in multicellular organisms, cell decisions 

about survival, growth, gene expression, 
differentiation and senescence or death, are made on 

the basis of external signals. These stimuli include 

cell-cell adhesion, growth factors, hormones, 
cytokines, neuropeptides, etc. The skill to integrate 

information from multiple sources is essential for the 

ability of the cell to respond appropriately to a wide 

range of conditions, and therefore enhances the 

adaptability and survival of the organism. One can 

consider that there are to kinds of communication 

mechanisms for SEPSIS modeling, both based on 

signal transduction in biological networks. The first 

mechanism can be represented by signaling 
intracellular networks, the other by signaling 

intercellular networks.  

 

4.1 Intracell communication 
Signal transduction networks allow cells to perceive 

changes in the extracellular environment in order to 

produce an appropriate response. A cellular process 

network mediates the transmission of extracellular 

signals to their intracellular targets. In general, the 

external signals are transmitted to the interior of the 

cells through receptors activating diverse signaling 
pathways. They can follow a single way and 

generate an answer or a specific cellular final 

process, or branch out and give rise to others. These 
pathways considered as a whole form an 

interconnected network, because pathways 

corresponding to different stimuli cross and generate 

alternative trajectories. The intracellular signaling 

implies several molecular processes. The signals can 

be as simple as the direct introduction of the signal to 

the nucleus and the activation of the transcription of 

proteins involved in the specific cellular function, 

which is expected. On the other hand, they can be 
very complicated and include multiple stages. For 

example, the receptor activates effector proteins like 

second messengers, kinases or phosphatases. They, 
in turn, activate transcription factor proteins, which 

determine the transcription of genes codifying for 

proteins involved in the specified cellular function. 
 Computational models in signal transduction 

pathways have been made using different points of 

view. Each research group chose the approach which 

seemed best for them and applied the most adequate 

computational tool for their purpose. This 

perspective involves a range from the types of 

information processing present at cellular level, such 

as sequential, parallel, distributed, concurrent and 

emergent; to the cognitive capabilities exhibited by 

certain signal transduction pathway component, such 

as memory, learning, pattern recognition and 

handling fuzzy data. In this sense, several 

computational approaches have been proposed to 

model the cellular signaling pathways, such as 
artificial neural networks [4], Boolean networks [5], 

Petri nets [6], rule-based systems [7], cellular 

automata [8], and multi-agent systems [9] 
 Table 2 summarizes the main characteristics of 

these computational approaches, taking into account 

the idea behind the approach, the cognitive 

capabilities that can be modeled, types of present 

information processing, and the part of the cellular 

signaling to be modeled.  

 

Table 2. Characteristics of computational methods 

 

Comp. 

approach 
Characteristics 

Boolean 

networks 

 

The cell can be modeled as a network 

of two state components interacting 

between them. The state of each 

component depends of a particular 

boolean function. 

Expert 

systems 

The interactions (activation, 

phosphorylation, etc.) between 

signaling network components are 

modeled using production rules 

Differential-

algebraic 

equations 

An ODE equation is built or each 

molecule x describing its relationship 

with all relevant molecules y 

Cellular 

automata 

 

The interaction between cells or 

molecules is modeled as a matrix, 

where the state of an element of the 

matrix depends on the states of  the 

neighbouring elements. 

Petri nets 

The cell is seen as a connected graph 

with two types of nodes. One type 

represents elements, such as signaling 

molecules, the other type represents 

transitions. 

Artificial 

neural 

networks 

 

The proteins in signaling networks are 

seen as artificial neurons in ANN. Like 

an artificial neuron, a protein receives 

weighted inputs, produces an output, 

and has an activation value. 

Distributed 

systems 

(agents) 

The cell is seen as a collection of 

agents working in parallel. The agents 

communicate between them through 

messages. 

 
 From all this models we consider that the most 

adequate for sepsis dynamic of the cellular signal 

transduction is a collection of autonomous agents 
communicating between them through a shared data 

structure, where each agent is implemented as a 

neural network, a Boolean network or a molecular 
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automata, depending of the complexity of the task 

carried out by the agent and the knowledge degree or 

cognitive capabilities required by it. 

 Our proposal consists in modeling the cell as an 

autonomous agent (AA), which in turn is composed 
by a society of autonomous agents, where each agent 

communicates through a blackboard with others. The 

blackboard architecture constitutes a working 
environment for the bottom-up modeling of 

information processing systems characterized by: (1) 

modularity, (2) parallel, distributed and emergent 

processing, (3) coordination and opportunistic 

integration of several tasks in real time, (4) use of 

several abstraction or context levels for the different 

types of information that participate in the 

processing network, (5) decision making, and (6) 

cognitive capabilities such as adaptive action 

selection, memory and learning. 
 In Fig. 1, the structure of this AA model can be 

appreciated. Three main components define the 

structure: the blackboard, the internal autonomous 

agents and interface autonomous agents. The 

blackboard represents the cellular compartments. 

Different levels in the blackboard correspond to 

different cellular compartments through which the 

signal transduction takes place. In this way, the 

cellular membrane, the cytoplasm and the nucleus 
could be represented as different blackboard levels.  

 
 

Fig. 1. Architecture of the AA model 

 

 The solution elements recorded on the 

blackboard represent two main types of intracellular 

signals: signaling molecules and activation or 

inactivation signals. Both types of signals are 

synthesized or created by internal autonomous agents 

(IAA). An IAA obtains a signal or combination or 

signals from a determinate blackboard level and 

transduces these into other signals on the same or 
other blackboard level. The way in which a signal is 

transduced depends of the cognitive capabilities of 

the IAA. On the other hand, the function of an 
interface autonomous agent (IfAA) is to establish the 

communication between the blackboard and the 

external medium. Not all external signals or 

combinations of these are recognized by an IfAA; 

this recognition depends both of the signal 

characteristics and the cognitive capabilities of the 

IfAA. IfAA‘s model the cell surface receptors and 

the mechanisms for the production of signaling 

molecules. Each agent, independently of its type, has 

a condition part and an action part. The way in which 
both parts are linked depends on the complexity of 

the intracellular component modeled by the agent. 

For this reason, agents which model complex 

components could use more advanced techniques, 

such as neural networks, or any combination of other 

techniques, to link both parts. Agents which model 

less complex components could use less 

sophisticated but useful techniques, such as Boolean 

networks or others.  

 

4.2 Intercell communication 
The most natural model for intercell communication 

is a topological network, i.e. a system of nodes with 

connecting links. The two limiting network 

topologies typically considered are: (i) d-

dimensional graphs - a lattice, for example - where 

every node connects with a well-defined set of 

closest neighbors, and (ii) random graphs, where 

every node has the same probability of being 

connected to any other node. Quantities used to 

quantitatively describe networks include: 
���� The minimum number of links that must be 

traversed to travel from node i to node j, that is 

called the shortest path length or distance 
between i and j. A graph is connected if any 

node can be reached from any other node; 

otherwise the graph is disconnected. The average 

path length is the average of the minimum 

number of steps necessary to connect any two 

nodes in a connected network.; 

���� The local clustering is the number of actual links 

in a local sub-network divided by the number of 

possible links; 
���� The degree distribution, p(k), is the probability 

of finding a node with k links. In a lattice p(k) is 

a delta-Kronecker function while in a random 
graph it is a Poisson distribution. 
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Real networks, however, are not well described by 

either model because they are both clustered (high 

degree of local connectivity) and small-worlds (it 

takes only a small number of steps to connect any 
two nodes). A recurrent characteristic of networks in 

complex systems is the small-world phenomenon, 

which is defined by the co-existence of two 
apparently incompatible conditions, (i) the number 

of intermediaries between any pair of nodes in the 

network is quite small and (ii) the large local 

redundancy of the network - i.e., the large overlap of 

the circles of neighbors of two network neighbors. 

The latter property is typical of ordered lattices, 

while the former is typical of random graphs [10].  

 
 

Fig. 3. A minimal model for generating 

 small-world networks 

 

 Recently, Watts and Strogatz [11] proposed a 

minimal model for the emergence of the small-world 

phenomenon in simple networks. In their model, 

small-world networks emerge as the result of 

randomly rewiring a fraction p of the links in a d-
dimensional lattice (Fig. 3, after [11]). The parameter 

p enables one to continuously interpolate between 

the two limiting cases of a regular lattice (p = 0) and 
a random graph (p = 1). 

 An important characteristic of a graph that is not 

taken into consideration in the small-world model of 
Watts and Strogatz is the degree distribution, i.e., the 

distribution of number of connections of the nodes in 

the network. The Erdos-Renyi class of random 

graphs has a Poisson  degree distribution, while 

lattice-like networks have even more strongly peaked 

distributions—a perfectly ordered lattice has a delta-

Dirac degree distribution. Similarly, the small-world 

networks generated by the Watts and Strogatz model 

also have peaked, single-scale, degree distributions, 
i.e., one can clearly identify a typical degree of the 

nodes comprising the network. Against this 

theoretical background, Barabasi and Albert found 

that that a number of real-world networks have a 

scale-free degree distribution with tails that decay as 

a power law. They suggested that consequently 

scale-free networks emerge in the context of growing 

network in which new nodes connect preferentially 

to the most connected nodes already in the network.  

 Significantly, scale-free networks provide 

extremely efficient communication and navigability 
as one can easily reach any other node in the network 

by sending information through the “hubs”, the 

highly-connected nodes. The efficiency of the scale-
free topology and the existence of a simple 

mechanism leading to the emergence of this 

topology led many researchers to believe in the 

complete ubiquity of scale-free network. Note that 

scale-free networks are a subset of all smallworld 

networks (but the inverse may not be true) because 

(i) the mean distance between the nodes in the 

network increases extremely slowly with the size of 

the network and (ii) the clustering coefficient is 

larger than for random networks. In fig.4 a graph 
model present a scale free network and is property of 

assortativity. 

 

 
 

Fig. 4. A scale free network graph 

 

For the example in fig. 4 we have: 
 

ki=4; knn,i=(3+4+4+7)/4=4.5 

 
In our approach to model intercellular 

communication in SEPSIS, the basic network model 

consists of cell types as nodes and of intercellular 

signaling species (first messengers) connecting the 

nodes. Because communication between cell types 

occurs in an explicit direction and various kinds of 

communication might exist, the resulting graph is 
directed. Between each node pair multiple edges (in 

both directions) are possible. Also edge weights (at 

least for the name/type of the connection) are 
necessary to reflect biological communication in a 

realistic manner. Thus, we do not model each 

individual cell, but the principal connections 
between cell types. In contrast to most other network 

models investigated recently this intercellular 

network possesses connectivity complexity rather 

i 

k=3 

k=7 

k=4 
k=4 
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than node complexity. The number of cell types in 

the human body is small (approximately 200) and 

fixed. The number of edges in contrast is principally 

orders of magnitude higher and varies over time. So, 

one of the challenges for future work will be to deal 
analytically and explanatory with this kind of 

complexity. Because it is not clear from the data, 

whether ligands from a ligand-receptor interaction 
will always establish communication these 

connections are called potential communication. The 

resulting bipartite graphs might need more 

sophisticated analyzing methods, but could serve as a 

base for dynamical modeling the intercellular 

communication for its similarity to scale-free nets.  

 

6 Conclusions 
The common characteristic of all complex systems is 

that they display organization without any external 
organizing principle being applied; a central 

characteristic is adaptability. Complex systems are 

about adaptation, self-organization and continuous 

change; the best metaphor may be a biological 

system. In this work we focus on SEPSIS,  one of the 

more complicated processes due to the diversity of 

involved cellular pathways.   
 The paper tries to answer to some essential 

questions? As far as modeling is concerned, what has 

already been tried? Which research groups exist, and 
what is their approach? What kinds of models for 

networks exist? What kind of data is needed to 

support the various models? These answers allow to 
construct two dedicated mechanism for both 

intracellular and intercellular communication. The 

first is an agent-based system where cognitive 

capabilities are coded using behavior based 

paradigms and the blackboard architecture, 

combined with other artificial intelligence 

techniques. Recruiting these techniques, the 

complexity of the topology and cognitive capacities 

of intracellular signaling system can be studied. The 
second is a  highly inhomogeneous scale-free 

network in which a few highly connected cells play a 

central role in mediating interactions among 
numerous, less connected cells. There will be a lot of 

future work to make this model efficient, especially 

by using its self-similarity property in order to decide 

only of a few numbers of connections. One possible 

function of this model is to activate output only if the 

input signal is persistent and to allow a rapid 

deactivation when the input goes off [12].  

 The edge complexity could be reduced in 

different respects. However, meaningful measures 
and intuitive visualization still need to be developed. 

For instance a clustering of the network derived from 

the connectivity distribution of the nodes might show 

sub-networks of intense communication or the 

impact of distinct nodes for the whole system. 

Network modeling, quantitative analysis and 

laboratory experiments have to be combined in 
various ways to gain new insights. 
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