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Abstract: Taylor models provide enclosures of functional dependencies by a polynomial and an interval
remainder bound that scales with a high power of the domain width, allowing a far-reaching suppression
of the dependency problem. For the application to range bounding, one observes that the resulting
polynomials are more well-behaved than the original function; in fact, merely naively evaluating them
in interval arithmetic leads to a quadratic range bounder that is frequently noticeably superior to other
second order methods.

However, the particular polynomial form allows the use of other techniques. We review the linear
dominated bounder (LDB) and the quadratic fast bounder (QFB). LDB often allows an exact bounding
of the polynomial part if the function is monotonic. If it does not succeed to provide an optimal bound,
it still often provides a reduction of the domain simultaneously in all variables. Near interior minimizers,
where the quadratic part of the local Taylor model is positive semidefinite, QFB minimizes the quadratic
contribution to the lower bound of the function, avoiding the infamous cluster effect for validated global
optimization tasks.

Some examples of the performance of the bounders for unconstrained global optimization problems
are given, beginning with various common toy problems of the community, and also including a rather
challenging Lennard-Jones problem.

Key-Words: Taylor model, Global optimization, Linear dominated bounder LDB, Quadratic fast bounder
QFB, COSY-GO.

1 Linear Dominated Bounder
The linear dominated bounder (LDB) introduced
in [2] is based on the fact that for Taylor models
with sufficiently small remainder bound, the linear
part of the Taylor model dominates the behavior,
and this is also the case for range bounding. The
linear dominated bounder utilizes the linear part
as a guideline for iterative domain reduction to
bound Taylor models.

LDB Algorithm

Wlog, find the lower bound of minimum of a Tay-
lor model P + I in D.

(1) Re-expand P at the mid-point c of D, call the
resulting polynomial Pm and the centered domain
D1.

(2) Turn the linear coefficients Li’s of Pm all posi-
tive by suitably flipping coordinate directions, call
the resulting polynomial P+.

(3) Compute the bound of the linear (I1) and non-
linear (Ih) parts of P+ in Dn. The minimum is
bounded by [M,Min] := I1 + Ih. If applicable,
lower Min by the left end value and the mid-point
value.

(a) If d =width([M,Min]) > ε, set Dn+1 such
that ∀i, if Li > 0 and width(Dn+1,i) > d/Li, then
Dn+1,i := Dn,i + d/Li. Re-expand P+ at the mid-
point c of Dn+1. Prepare the new coefficients Li’s.
Go to 3.

(b) Else, M is the lower bound of minimum.

Any errors associated with re-expansion and
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estimating point values are included in the remain-
der error bound interval. If f is monotonic, the
exact bound is often obtained with high accuracy.
If only a threshold cutoff test is needed, the re-
sulting domain reduction or elimination is often
superior. The reduction of the domain of interest
works multi-dimensionally and automatically, and
the observed domain reduction rate is thus often
fast. Even when there is no linear part in the orig-
inal Taylor model, by shifting the expansion point,
normally a linear part is introduced.

2 Quadratic Fast Bounder
The natural next idea of Taylor model bounding
is to utilize the quadratic part of P, and a prelim-
inary scheme of a quadratic dominated bounder
(QDB) is discussed in [2]. For the task of global
optimization in practice, an efficient bounding of
the quadratic part in the vicinity of interior min-
imizers is important. Around an isolated interior
minimizer, the Hessian of a function f is positive
definite, so the purely quadratic part of a Tay-
lor model P + I which locally represents f, has
a positive definite Hessian matrix H. The actual
definiteness can be tested in a validated way us-
ing the common LDL or extended Cholesky de-
composition. The quadratic fast bounder (QFB)
provides a lower bound of a Taylor model cheaply
when the purely quadratic part is positive definite.
It is based on the following observation.

Let P + I be a given Taylor model in D, and
let H be the Hessian matrix of P. We decompose
the polynomial P into two parts via

P + I = (P −Q) + I +Q.

Then a lower bound for P + I is obtained as

l(P + I) = l(P −Q) + l(Q) + l(I).

For QFB, we choose

Q = Qx0 =
1

2
(x− x0)tH(x− x0)

with any x0 ∈ D. If H is positive semidefinite,
l(Qx0) = 0, and the value 0 is attained. The re-
maining P −Qx0 does not contain pure quadratic

terms anymore, but consists of linear as well third
and higher order terms P>2. If x0 is chosen to be
the minimizer of the quadratic part P2 of P in D,
then x0 is also a minimizer of the remaining lin-
ear part (a consequence of the Kuhn-Tucker con-
ditions), and so the lower bound estimate is opti-
mally sharp. Thus by choosing x0 close enough to
the minimizer of P2 inD, a contribution of P2−Qx0

to the lower bound can be very small. For a given
P2 in D, x0 can be determined inexpensively by

an iterative scheme to search a series of x
(i)
0 in the

direction of −∇P2 while limiting x
(i)
0 to stay inside

D.

3 Validated Global Optimizer
COSY-GO
For the example problems of validated global op-
timization in the next sections, we apply three
branch-and-bound methods available in the code
COSY-GO[4]. The first one is the Taylor model-
based optimizer utilizing the LDB and QFB algo-
rithms (LDB/QFB). We compare the performance
with two other optimizers; one based on mere in-
terval bounding (IN) and one based on bounding
with centered form (CF). The sub domain box list
management is performed in the same way for all
three optimizers. At each sub domain box step,
the following tasks are performed.
• A function bound is estimated using the tools

described below; if the lower bound is above the
cutoff value, the box is eliminated; if not, the box
is bisected.
• Bounding schemes are applied in a hierarchi-

cal manner. The mere interval bounding is esti-
mated for all optimizers. If the interval bound fails
to eliminate the box, the centered form bounding is
performed for the CF optimizer. Likewise, for the
LDB/QFB optimizer, if the interval bound fails,
the naive Taylor model bound[3] based on interval
evaluation of the Taylor polynomial is determined,
and only when it fails, the LDB bound is deter-
mined. If it also fails and the quadratic part of
the local Taylor model of the function is positive
definite, the QFB bounding is performed.
• When the LDB bound fails, however, often

the domain box can be reduced before bisection.
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• The cutoff value is updated. The mid-point
value estimate is conducted for all optimizers.
• For the LDB/QFB optimizer, the linear and

quadratic parts of the local Taylor model are uti-
lized to guess a candidate for the global minimizer
to obtain a better cutoff value estimate.

4 A One Dimensional Polyno-
mial
The first example problem is to search the mini-
mum of the polynomial

f(x) = 1 + x5 − x4

in [0, 1], suggested by R. Moore[5]. The function
has a shallow minimum at x = 0.8, and looks
rather innocent as shown in Figure 1; but the
dependency problem and the high order of the
polynomial prevents the mere interval bounding

method from being successful. Table 1 summa-
rizes the performance of the three optimizers. The
Taylor model LDB/QDB optimizer eliminates all
sub domain boxes but the one containing the min-
imum in 17 steps, among which 8 steps are size
reductions by LDB. There are at most 3 active
boxes kept in the whole optimization process. On
the other hand, the interval optimizer requires a
total of 12471 steps, and retains 2591 small boxes.
The centered form optimizer performs better than
the interval optimizer, but cannot reach the per-
formance of the LDB/QFB optimizer. The sub do-
main boxes active in each step are shown in Figure
1, and an example of LDB domain reduction can
be seen in the processing of the parent box in step
5 to yield the bisected boxes appearing in steps 6
and 7. As seen later in Figure 2, the LDB domain
reduction works favorably also in multidimensional
cases.
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Figure 1: Global optimization of f(x) = 1 + x5 − x4 in [0, 1] (top left). Sub domain boxes for minimum
search are shown at each step: (top right) the interval, (bottom right) the centered form, and (bottom
left) the LDB/QFB optimizers.
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f(x) = 1 + x5 − x4 in [0, 1] Beale function fB in [−4.5, 4.5]2

IN CF LDB/QFB IN CF LDB/QFB

Total box processing steps 12471 145 17 3407 3285 353

Max number of active boxes 4044 11 3 236 234 52

Retained small boxes (< 10−6) 2591 4 1 25 25 3

LDB domain reduction steps – – 8 – – 108

Table 1: Performance of various optimizers.

5 The Beale Function
The next example is the Beale function[6]

fB(x1, x2) = (1.5− x1(1− x2))2 +
(
2.25− x1(1− x2

2)
)2

+
(
2.625− x1(1− x3

2)
)2
.

The problem is to find the minimum in the ini-
tial domain [−4.5, 4.5]×[−4.5, 4.5] with validation.
The function has little dependency and the mini-
mum 0 occurs at (3, 0.5), however the very shallow
behavior of the function makes a validated global
optimization task difficult.

The performance of the optimizers is summa-
rized in Figure 2 and Table 1. Square expressions
in fB are not utilized to simplify the arithmetic.
We observe no advantage in the centered form op-
timizer compared to the interval optimizer. On the
other hand, the LDB/QFB optimizer significantly
outperformed both others because of more efficient
box rejection and LDB domain size reduction.

6 The Lennard-Jones Potential
Problem
For the last example, we choose a challenging prob-
lem and also compare actual performance with
one of the leading global optimization tools, Baker
Kearfott’s GlobSol[1]. We consider the Lennard-
Jones potential problem, describing an ensemble of
n particles interacting pointwise with the potential

V =
n∑

i<j

VLJ (ri − rj) , VLJ(r) =
1

r12
− 2 · 1

r6
.

As seen in Figure 3, VLJ has a shallow minimum
of value −1 at r = 1, while having an extremely
wide range of function values. In fact, the behav-
ior of the function has a similarity to the 5th order
polynomial discussed above.

We studied the following six and nine dimen-
sional problems corresponding to n = 4 and n = 5.

For n = 4, four particles are positioned at

~a1 = (0, 0, 0), ~a2 = (x1, 0, 0),

~a3 = (x2, x3, 0), ~a4 = (x4, x5, x6)

with all the xi’s positive, and the objective func-
tion is

fn=4(~x) =

n=4∑

i<j

VLJ (ri − rj) + 6.

The minimum is expected to occur at ~xmin =
(1, 1/2,

√
3/2, 1/2, 1/(2

√
3),
√

2/3) with a value of
0. In the initial search box

[0.8, 1.2]× [0.4, 0.6]× [0.7, 1.0]

×[0.4, 0.6]× [0.2, 0.4]× [0.7, 1.0],

the LDB/QFB optimizer locates the minimizer

~xmin ∈ [0.999999236, 1.00000077]

× [0.499999236, 0.500000764]

× [0.866025161, 0.866025735]

× [0.499999236, 0.500000764]

× [0.288674163, 0.288675691]

× [0.816495956, 0.816497373]

with the expected minimum value enclosed in a
sharp interval as shown in Table 2. Both the in-
terval and the centered form optimizers, however,
failed to eliminate any sub box before reaching the
limit of list length for sub domain box manage-
ment. To provide performance comparison, we ran
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Figure 2: Minimum search for the Beale function in [−4.5, 4.5]2 by the interval, the centered form, and
the LDB/QFB optimizers. Left: sub domain boxes. Right: number of active boxes and cutoff value.
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Figure 3: The Lennard-Jones potential VLJ(r) and four interacting particles.
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Figure 4: Performance of the Taylor model LDB/QFB optimizer for the Lennard-Jones potential problems.

n = 4 (6D) n = 5 (9D)
LDB/QFB GlobSol LDB/QFB GlobSol

Total steps 15655 243911 69001 598491

Max boxes 2866 – 6321 –

Retained boxes (< 10−6) 17 – 111 –

LDB reduction 2079 – 5153 –

CPU time 89 s 5833 s 1550 s (> 259200 s)

Minimum [−6.8 · 10−11 < 10−12 [0.896147584195 < 0.9046
, 1.5 · 10−13] , 0.896147584293]

Table 2: Performance for the 6D and 9D Lennard-Jones problems by LDB/QFB COSY-GO and GlobSol.

the same problem in GlobSol with its standard
mode, and the result is listed in the table.

One more particle is added at ~a5 = (x7, x8, x9)
with x7,x8 > 0, x9 < 0, and the new objective
function is

fn=5(~x) =

n=5∑

i<j

VLJ (ri − rj) + 10.

The original domain box is

[0.9, 1.1]× [0.45, 0.55]× [0.8, 1.0]

×[0.45, 0.55]× [0.25, 0.35]× [0.75, 0.9]

×[0.45, 0.55]× [0.25, 0.35]× [−0.9,−0.75].

The LDB/QFB optimizer locates the minimizer

~xmin ∈ [1.00145263, 1.00145417]

× [0.500726317, 0.500727845]

× [0.867283629, 0.867285157]

× [0.500726317, 0.500727845]

× [0.289093780, 0.289096070]

× [0.813335036, 0.813336183]

× [0.500726317, 0.500727845]

× [0.289093780, 0.289096070]

× [−0.813336183,−0.813335036],

and the achieved enclosure of the minimum is
listed in Table 2. The table and Figure 4 show the
performance, and the comparison with GlobSol in
the standard mode is provided as well. Appar-
ently the Taylor model-based optimizer compares
very favorably.
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