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Abstract: - In this work a methodology for damage detection on laminated composite plates involving the use of 
piezoelectric sensors and artificial neural networks is present. The presence of damage in the laminated 
composite plate leads to changes in its structural characteristics, causing variations in electrical potential of 
sensors. A feed-forward type neural network, trained by Levenberg-Marquardt algorithm is used in order to 
locate and quantify damage on the laminated plate using data obtained from piezoelectric sensors. A higher order 
finite element formulation allowing the response of the laminated composite plates is used to obtain the changes 
on electrical potential. A numerical example shows the feasibility of the proposed procedure. 
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1   Introduction 
 

The occurrence of damage in a structure causes 
changes in its response modifying the mass, stiffness 
or damping properties. Therefore, the correct 
knowledge of the behavior of the structure can be 
used to create a damage detection scheme.  
 

The damage identification methods can be 
categorized based on the type of measured data used 
and/or the technique used to identify the damage 
from the measured data [1]. The most common used 
class of damage identification methods is based on 
changes in vibration frequencies [2]. However, these 
methods seem to fail to locate and quantify the 
damage, since the modal frequencies are a global 
property of the structure [3]. 
 

Another class of damage identification methods uses 
the mode shape changes. The aim is to compare the 
mode shapes of the damaged and undamaged 
structures. These methods are more sensitive to 
damage than the methods based on modal 
frequencies. An alternative to using mode shapes to 
obtain spatial information about vibration changes is 
using mode shape derivatives, such as curvatures or 
strain energy [4]. 
 

The dynamically measured flexibility matrix is 
another class of damage identification methods that 
estimates changes in the static behavior of the 
structure [5]. These methods are more sensitive to 

changes in the lower frequency modes of the 
structure. 
 

Other several damage identification methods can be 
found in literature, with a special emphasis on neural 
network based methods [6], [7] and electrical 
resistance measurement methods [8]. Recently, the 
development of smart materials and adaptive 
structures with piezoelectric sensory/active 
capabilities has improved the performance and 
reliability of the structural systems, particularly 
composite materials. However, up to now the great 
application of these capabilities has been done within 
the area of control, whereas research in the field of 
damage identification has been comparatively 
limited. Since damage is a local phenomenon, it 
seems that local information provided by sensors is 
suitable for damage identification. A significant 
difficulty is that the data obtained from piezoelectric 
sensors are extremely limited and localized due to the 
characteristics of strains. The damages generally have 
very little influence on the strains of areas which are 
far from damage. 
 

Fukunaga et al. [9] proposed a two-stage damage 
identification method with data obtained from 
piezoelectric sensors in a beam example. In the first 
stage, a first order approximation technique, which 
separates the effects of damage severity and damage 
locations, obtains the electrical potential change on 
sensors. In the second stage, an iterative scheme for 
solving nonlinear optimization programming 
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problems, based on the quadratic programming 
technique, was proposed to predict damage extents. 
 

In this work we propose a neural network based 
methodology to identify and quantify damage using 
data obtained from piezoelectric sensors as inputs to a 
feed forward neural network. A higher order finite 
element formulation allowing the response of the 
laminated composite plates was used to obtain the 
necessary electrical potential on sensors [10]. A 
numerical example of a simply supported laminated 
composite plate is used to show the feasibility of the 
method.  
 
 
2   Problem Formulation 
 
2.1 Laminated Plate with Piezoelectric 
Sensors 
 

A simulated composite laminated plate, shown in Fig. 
1, is employed to describe and investigate the 
effectiveness of the proposed methodology. The 
numerical analysis of the plate was done by the finite 
element method with 36 equal elements [10]. The 
1 1m m×  composite plate was made with two 
glass/epoxy layers, both with 4 mm of thickness. The 
plate is simply supported on all sides. In the upper 
and lower surfaces of the plate, piezoelectric layers 
acting as sensors can be perfectly bonded. Four pairs 
of piezoelectric are symmetrically placed (elements 
shadowed in the Fig. 1). The piezoelectric layers have 
1 mm of thickness. 
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Fig. 1 – Composite Laminated Plate with Piezoelectric 
Sensors 

 
The mechanical properties for the glass/epoxy layers 
were obtained from the Halphin-Tsai equations [11] 
with matrix and fiber properties shown in Table 1. 
 

Table 1 – Properties of Matrix and Fiber 

Material 
E  

[ ]GPa  

E  

[ ]GPa  
ν  

ρ  

3/Kg m⎡ ⎤⎣ ⎦  

Epoxy Matrix 3.400 1.308 0.3 1200 
Glass Fiber 85.000 35.420 0.2 2500 

 
The mechanical properties for an undamaged plate 
are represented in Table 2. The properties for 
composite layers are obtained considering 65% of 
fiber volume fraction. The electric properties 
considered for the piezoelectric layers are 

2
31 32 0.046 /e e C m= =  and 09

33 1.062 /p F m−= . 
 

Table 2 – Properties of Composite and 
Piezoelectric Layers 

 

Material 
1E  

[ ]GPa  

2E  

[ ]GPa  

12G  

[ ]GPa  
12ν  

Composite Layer 

( )65% fV  56.44 17.358 6.133 0.3 

Piezoelectric 
Layer 

2.00 2.00 1.00 0.0 

 
The simply supported plate is charged with a 
concentrated load of 5N in its center. The mechanical 
behavior of the piezoelectric material is also 
considered. The differences among the potentials are 
obtained with a finite element home made code 
programmed in Matlab. 
 

More detailed information concerning the analysis of 
composite laminated plates can be found in [10]. 
 
2.2 Damage Simulation 
 

It is assumed that the break of fibers in certain 
regions of the plate (elements of the plate) can be the 
damage. The simulation of damage in the plate was 
considered separately for each element, and refers 
only to glass/epoxy layers. The break of fibers was 
simulated by the reduction in the fiber volume 
fraction of the damaged element. Table 3 shows the 
percentage values considered for damage simulation. 
There we can distinguish values used for the training 
and cross validation of the neural networks and 
values used for testing the neural network ability to 
locate and quantify the damage. 
 

For each damage case the differences among the 
potentials were obtained and normalized between -1 
and +1 values. 
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Table 3 – Percentage Values for Damage 
Simulation 

 

0 5 6 7 8 9 11 12 13 14 15 16

17 19 20 21 22 23 24 25 27 28 29 30

31 32 33          
            

 Training  Test  Validation 
 
2.3 Bi-level Algorithm 
 

The two-stage damage identification methodology is 
proposed using information given from the 
piezoelectric sensors. The idea of the methodology is 
to use the fact that the presence of damage in the 
laminated composite plate causes changes in 
electrical potential of sensors. The information about 
these changes can be used to correctly train a neural 
network. 
 

The plate was divided in 4 equal zones with 9 
elements each one, as shown in Fig. 1. The idea 
consists of using a sensor in each zone of the plate. 
We have a bi-level algorithm with two steps, 
schematically shown in figure 2. In the first step a 
neural network gives the location of the damage on 
the plate. After recognizing the location of damage, 
another neural network corresponding to the zone of 
the damage location is activated and quantifies the 
damage.  
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Fig. 2 – Damage Detection Bi-level Algorithm 
 
With this algorithm we need to train a neural network 
to locate the damage (LocNet 4-X-X-6) and four 
different neural networks to quantify the damage 
(QuantNet ZY 4-X-X-1). To train the neural network 
that made the location of damage, a total of 936 
patterns were obtained: 541 for net training, 144 for 
cross validation and 252 for testing. To train the 
neural networks that made the quantification of 
damage we have 135 patterns for net training, 36 for 
cross validation and 63 for testing each neural 
network. 
 

Several feed forward neural networks with different 
dimensions were created. All the networks considered 
have four layers with hyperbolic transfer function in 
the hidden layers and sigmoid transfer function in the 

output layer. The inputs of the networks are the 4 
normalized potential differences in the sensors. The 
outputs are one single value between -1 and +1 for 
the damage quantification and six binary digits, 
representing a number between 1 and 36, for the 
damage location.  
 

The dimensions of the neural networks were obtained 
by experimentation, knowing that the best neural 
networks are those ones with fewer dimensions which 
can generalize well, and that the total number of 
neurons and bias must be shorter than the total 
number of patterns [12]. The dimensions considered 
can be seen in results. 
 

In order to simulate situations in service or 
experimental conditions, perturbations are added to 
the testing data. This is done with simulated noise 
added to the values from neural networks testing, 
according to 
 

1
100

A A randnβ⎛ ⎞= +⎜ ⎟
⎝ ⎠

 (1)
 

where A  is the value with noise, A  is the value 
without noise, β  is the noise level considered for the 
piezoelectric sensor readings and randn  is a random 
number with variance and standard deviation 1. 
 
 
3   Results Obtained 
 
3.1 Damage Location 
 

In Table 4 we present the neural networks trained to 
make the damage location and the results obtained. 
There we can see the necessary epochs for training 
the networks and the number of damage test cases 
that have not been located (performance of the net). 
Each neural network was trained 10 times and several 
levels of perturbation on test data values were 
considered.  
 

Table 4 – Results Obtained for Damage 
Location 

 

Values of β  
NET Epochs 

0 0.5 1 2 4 6 10 
4-10-10-6 110 14 - - - - - - 

4-11-11-6 85 7 - - - - - - 

4-12-12-6 84 0 0 0 7 35 115 141 

4-13-13-6 125 0 0 2 10 37 105 153 

4-14-14-6 161 0 0 0 1 48 113 147 

4-15-15-6 92 0 0 0 5 89 149 203 

4-16-16-6 95 0 0 0 3 44 100 157 
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From the results obtained we can see that the best 
network was LocNet4-14-14-6 with only one location 
error for 2β = . 
 

As can also be seen in table 4, the increase in the 
number of neurons in hidden layers does not mean 
better accuracy. Hence, the results of this net with the 
ones that have 15 and 16 neurons can be compared. 
 
3.2 Damage Quantification 
 

For damage quantification several neural networks 
with different number of hidden neurons were tested. 
The best neural network obtained was QuantNet 4-6-
6-1. To train this net we need a mean of 200 epochs 
and 6 seconds each one. 
 

For this network the results obtained, presented in 
Table 5, are shown as mean relative errors in each 
damage case, calculated by 
 

( )=100× - /error damage out damage  (2)
 
where error  means the relative error, damage  is the 
damage target value and out  is the output of the 
network. The mean relative errors are obtained from 
the corresponding 9 elements of each zone. The 
network was tested with a perturbation 0.25β =  on 
testing data. It must be pointed out that all networks 
were trained 5 times, and each result present in the 
table refers to the best obtained from the ones that 
were trained. 
 

Table 5 – Mean Relative Errors on 
Damage Quantification 

 
Mean Relative Error 

Zone 
Damage 
Target 
Value 1 2 3 4 

Global 
Mean 
Error 

8 1.163 1.312 2.046 1.397 1.479 
12 0.701 0.626 0.998 1.016 0.835 
16 0.435 0.550 1.012 0.402 0.600 
20 0.668 0.489 0.472 0.428 0.514 
24 1.142 0.774 0.976 1.085 0.994 
28 0.514 0.445 0.848 0.517 0.581 
32 0.354 0.433 0.523 0.292 0.401 

 
As can be seen in table 5 the mean relative error in 
quantification is greater, as expected, for greater 
values of damage. But even for the case of target 8 
the global mean error is less than 1.5%. 
 

4   Conclusions 
 
In this paper, a two-stage damage identification 
method, with a neural network based methodology 
using information from piezoelectric sensors has been 
proposed. In the first stage a trained neural network is 
used to locate the damage and in the second stage 
another neural network estimates the extension of the 
damage. A simulated composite laminated plate is 
employed to illustrate the effectiveness of the 
methodology. The damage was simulated by the 
reduction in the fiber volume fraction of an element 
of the plate. All the necessary data were obtained by 
the finite element method. From the numerical 
example, it was found that the accuracy of the 
technique is high.  
 

The following conclusions can be observed in this 
study: 
 

a) The neural network model presented can be used in 
the damage detection of structures with high 
accuracy. The location and quantification of the 
damage are determinable if the neural networks are 
correctly defined and trained;  
 

b) The data collected from the piezoelectric sensors 
are excellent diagnosis parameters for the detection of 
the damage and could be used by the neural 
networks; 
 

c) The neural networks are a promising tool as the 
non destructive technique for the detection of the 
damage. 
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