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Abstract:- This research utilizes linear programming support vector regression to perform variable selection and 
rainfall estimation.  Variables selected from applying linear programming support vector regression are used to 
perform rainfall prediction tasks using standard support vector regression and a Bayesian neural network.  Ground 
truth rainfall data are necessary to apply intelligent systems techniques.  A unique source of such data is the 
Oklahoma Mesonet.   With the advent of a national network of advanced radars (i.e., WSR-88D), massive archived 
data sets are available for data mining. The reflectivity measurements from the radar are used as inputs for the 
learning techniques tested. The application of linear programming support vector regression for variable selection 
is new for the estimation of rainfall by radar. Results show that by selecting subsets of pertinent variables, standard 
support vector regression is more accurate in terms of generalization error than application of either traditional 
regression or a rain rate formula used in meteorology. Moreover, support vector regression shows a better 
prediction than standard linear programming support vector regression, traditional linear regression and Bayesian 
neural network for rainfall estimation. 
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1. Introduction 

Heavy rainfall, leading to flash floods, kills 
more people than lightning, tornadoes or hurricanes. 
Despite the impact of flash floods, our ability to 
estimate high rainfall rates from current state of the 
science technology is frequently inaccurate and, 
hence, there is ample impetus for improvement. 
Much of this inaccuracy arises from poor 
precipitation estimates from the Weather 
Surveillance Radar 1988 Doppler (WSR-88D) 
algorithms, which use only empirical techniques [5, 
10, 11].  

Regression models have been applied as an 
approach for modeling of linear and nonlinear 
systems. In regular regression, the errors are assumed 
to be normally, identically and independently 
distributed.  Generally, those assumptions are not 

satisfied in real applications. In fact, the error 
distributions are likely to be contaminated by 
occasional bad values giving rise to outliers.  

Alternative approaches to regression are 
Bayesian Neural Networks (BNNs) [6, 7], support 
vector machines (SVMs) and linear programming 
support vector regression (LP-SVR).  These 
approaches are attractive as they relax distributional 
assumptions of the data..  

SVMs, introduced by Vapnik [19], have been 
applied successfully to solve numerous problems in 
classification and regression.  Müller et al. [9] used 
support vector regression (SVR) to predict time 
series data and compared the results with radial basis 
function networks, demonstrating that SVR had 
excellent performance. Trafalis and Santosa [16] 
used SVR along with a feedforward neural network 
and radial basis function (RBF) networks to predict 
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monthly flour prices in three cities.  Again, results 
showed that SVR outperformed the two other 
methods. Linear programming support vector 
machine (LP-SVM) has been used successfully in 
classification and relevant feature identification in 
molecular profiling data [2] and for feature selection 
in tornado detection [17]. 

Since these techniques show promise in 
classification and prediction problems, the present 
work examines their efficacy for a rainfall estimation 
problem.  The main objective of the paper is to 
develop an approach, new to radar meteorology, that 
uses Linear Programming Support Vector Regression 
(LP-SVR), SVR, and BNN to improve WSR-88D 
rainfall estimation over more traditional techniques.  

Section 2 motivates and defines the problem. In 
sections 3 and 4 the data, preliminary analyses and 
the methodology are provided. Section 5 discusses 
the experimental setting and the analysis of the 
computational results. Section  6 concludes the paper.  

   

2. Problem Statement 
For over forty years, rainfall estimation from 

radar has been an active area of research. For the 
most part, the issue has been addressed through radar 
reflectivity-rainfall relations (known as Z-R). The Z-
R relation was pioneered by Marshall and Palmer [8]. 
A method, based on matching the probabilities of the 
two variables, of deriving Z-R relation is presented 
by Rosenfeld et al. [13]. Currently, radar rainfall 
estimates are computed from a parametric Z-R 
relation that can be demonstrated in various ways. A 
common form of this relationship for rainfall rate 
(RR) can be written as  

RR= 10 C (0.0625) (Z)  
where  C = 0.036 mm/hr and Z is the reflectivity. The 
RR equation is one of many developed for radar Z-R 
relations. Other Z-R relations have tuning parameters 
a, b in a regression format of Z= a Rb. The current 
WSR-88D default values for a and b are 300 and 1.4, 
respectively [5]. However, the values of a and b vary 
from place to place, season-to-season, and time to 
time [20]. It is obvious that an estimation technique 
based on this relation will be suboptimal since no 
single value for a or for b will give a good estimate 
of the rainfall over a broad range of conditions. What 
does occur is a large uncertainty in estimating rainfall 
from reflectivity. The bias is not a constant and 

cannot be corrected with existing algorithms. 
Therefore, it is essential to develop a new technique 
that reduce this variability of the Z-R relation.  

The WSR-88D digital base data contains 
three variables: velocity (V), reflectivity (Z), and 
spectrum width (W). Current rainfall detection 
algorithms use only Z data [5]. This work proposes to 

• determine the suitability of SVR, LP-
SVR and BNN for precipitation 
prediction, 

• compare the forecasts of precipitation 
given by SVR, LP-SVR and BNN to  
previous research, and 

• determine the relevant variables for 
rainfall prediction. 

By application of the SVR, LP-SVR and 
BNN, the aim of this research is to improve the 
precipitation processing subsystem (PPS) by creating 
new algorithms.   
 

 
3. Data and Analysis 

The rainfall data for calendar year 1998 are 
collected from the Chandler, Oklahoma Mesonet 
station. The Oklahoma Mesonet is a statewide 
network of 119 automated weather observing 
stations, designed with dense spatial coverage across 
the state [1]. Nine main parameters are measured at a 
time resolution of 5 minutes at all stations including 
rainfall.  The Mesonet data are heavily quality 
controlled and archived for the period 1994 to 
present with 99.8 percent availability.  

The radar (KTLX) used is located near 
Norman, OK and has complete coverage over a large 
number of Mesonet sites.The KTLX radar  is situated 
approximately 54 km west-southwest of the Chandler 
raingauge.  The WSR-88D radar has an effective 
range of approximately 230 km. The radar performs 
approximately 10 elevation scans that comprise a 
single volume scan. Each elevation scan is at a 
particular elevation angle between 0.5 and 15 degrees 
above the horizontal. For each elevation scan, the 
radar revolves a full 360 degrees about the vertical 
and makes 366 azimuthal scans within the revolution. 
This 54 km distance between the radar and raingauge 
is thought to be near optimal for sensing the 
atmosphere as the distance allows for measurement 
of the vertical extent of the convective clouds 
responsible for thunderstorms. For the five 
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azimuthals facing Chandler , OK,  on the five lowest 
elevation scans, Z is retained.  Z is measured once in 
every kilometer or at 230 points for every azimuthal 
scan and 5 one km range boxes are used for each of 
the 5 azimuth. Each volume scan measurement takes 
approximately 5 minutes to complete. 

Given the 5-minute time resolution of both 
observing and measurement platforms, it is clear that 
there will be a large amount of data. For each 
elevation angle used (5), there are 25 radar spatial 
variables selected over and around the Chandler area.  
Therefore, the radar volume scan contains 125 input 
variables.  There were 576 five minute-period 
samples used for both the radar and raingauge 
information.  Owing to the highly correlated structure 
of the data, it is convenient to preprocess these data 
and apply data reduction techniques.  In the present 
study, we were able to reduce 125 input variables to 
8 orthogonal dimensions accounting for 99 percent of 
the variance of the original data using principal 
components.    
 

4. Methodology 
4.1 Linear programming Support Vector 
Machines (SVM) 

Suppose we have been given a set of training 
data , with inputs xk ∈ Rn and ouputs yk ∈ 
R. By support vector regression, one wants to find a 
function f(x) that has at most ε deviation from the 
actual target yk for all training data (Fig. 1).  

l
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Figure 1. Linear SVR with slacks ξ. Points outside 2ε 
tube are penalized. 
 

For the linear case, suppose we have the 
following function as a regressor: 

f(x) = wTx + b,                              (1)                                                       
where <.> denotes the dot product. The problems of 

regression and relevant variable identification can be 
solved concurrently by considering a sparse 
hyperplane, one for which the weight vector w has 
few non-zero elements. The hyperplane we are 
seeking is: 
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 If a weight vector element is zero, = 0, 

then feature p in the example vector does not decide 
the class of x and is thus “irrelevant”. Only a variable 
for which the element is non-zero, wp ≠ 0, contributes 
to define hyperplane f(x)=0 and, thus is useful for 
regression. The problem of defining a small number 
of relevant variables can be thought of as 
synonymous with identifying a sparse hyperplane. 
Learning a sparse hyperplane can be formulated as an 
optimization problem. Minimizing the L0 norm of the 
weight vector, ||w||0, minimizes the number of non-
zero elements. The L0 norm is ||w||0 = number of {p: 
wp ≠ 0}. Unfortunately, minimizing an L0 norm is 
NP-hard. However, a tractable, convex 
approximation is to replace the L0 norm with the L1 
norm [4]. Minimizing the L1 norm of the weight 
vector, ||w||1, minimizes the sum of the absolute 
magnitudes of the elements and sets most of the 

elements to zero. The L1 norm is ||w||1 =∑ . 

We assume that there is a function f that 
approximates all pairs (xi, yi) with precision ε. In this 
case we assume that the problem is feasible. 
Therefore, we have to solve the following 
optimization problem in the primal weight space: 
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Problem (3) can viewed as a special case of 

minimizing a weighted L1 norm, , in 

which the vector of weighting coefficients a is a unit 
vector, ap =1, ∀p∈{1,.., P}. In other words, all 
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variables are presumed to be equally good relevant 
variable candidates. Prior knowledge about the 
(un)importance of variable p can be encoded by 
specifying the value of ap. In the case of infeasibility 
where some points might deviate from f ± ε, one can 
introduce slack variables ξ, ξ* to cope with infeasible 
constraints of the optimization problem. Then the 
above problem can be formalized as 

∑
=

+
l

1
1,

||||min
i

ibw
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The constant C > 0 determines the trade off 
between the flatness of function f and the amount up 
to which deviations larger than ε are tolerated. Any 
deviation more than ε will be penalized with C (Fig. 
1). The value of C can be chosen more systematically 
via cross validation. Problem (4) can be recast as a 
linear programming problem by introducing extra 
variables up and vp where wp = up − vp and |wp| = up + 
vp. These variables are the pth elements of u, v∈ RP. 

The L1 norm becomes  and 

the problem can be rewritten in a standard form as 
follows: 
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Problem (5) minimizes a linear function subject to 
linear constraints.  

 
4.2 Standard Support Vector Regression 
(SVR) 
The same problem described in section 4.1 can be 
formulated as a quadratic programming problem. For 
a detailed explanation see Schölkopf and Smola [14]. 
 
4.3 Bayesian Neural Network 

The Bayesian evidence framework has been 
successfully applied to the design of multilayer 

perceptrons (MLPs) in the work of MacKay [6, 7]. 
Bayesian neural network is the extension of artificial 
neural networks (ANN). Bayesian methods have 
been proposed for neural networks to solve 
regression and classification problems. These 
methods claim to overcome some difficulties 
encountered in the standard approach, such as 
overfitting.  

In conventional approaches, the training for 
ANN is based on the minimization of an error 
function, and is often motivated by some underlying 
principle such as maximum likelihood.  The 
disadvantage of such approaches is that the designed 
networks can suffer from a number of deficiencies, 
including the problem of determining the appropriate 
level of model complexity. More complex models 
(e.g. ones with more hidden units, with more layers 
or with smaller values of regularization parameters) 
give better fits to the training data, but if the model is 
too complex it may give poor generalization 
(overfitting).  

The Bayesian viewpoint provides a general 
and consistent framework for statistical pattern 
recognition and data analysis. In the context of neural 
networks, a Bayesian approach offers several 
important features including the following [3]:  

• The conventional approach to network 
training, based on the minimization of an 
error function, can be seen as a specific 
approximation to a full Bayesian treatment.  

• Similarly, the technique of regularization 
arises in a natural way in the Bayesian 
framework. The corresponding regularization 
parameters can be treated consistently within 
the Bayesian setting, without the need for 
techniques such as cross-validation.  

• For classification problems, the tendency of 
conventional approaches to make 
overconfident predictions in regions of 
sparse data can be avoided.  

• Bayesian methods provide an objective and 
principled framework for dealing with the 
issue of model complexity (for example, how 
to select the number of hidden units in a 
feed-forward network), and avoid many of 
the problems of overfitting which arise when 
using maximum likelihood.  

 

5. Experiments 
The SVR, LP-SVR and BNN [15] experiments are 
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performed in the MATLAB environment. First, LP-
SVR is applied to identify the relevant variables with 
respect to the minimum mean squared error value of 
testing phase. MINOS solver [12], which is 
embedded in TOMLAB software package, is used to 
solve the linear programming problem resulting from 
LP-SVR formulation. The experiments are performed 
by applying the cross-validation technique to find the 
best constant cost C. After relevant variables are 
identified, then the data set with selected features is 
subject to SVR and BNN. For SVR, an RBF kernel 
function was used with some values of parameters C 
and spread σ (see section 4.1). The selection of 
parameters C and σ is based on cross-validation. It is 
found that the best parameters values are C=10000 
and σ = 0.7 for this study.  There are 10 samples for 
training and testing.  
 
6. Results  
Using LP-SVR reduces the number of variables from 
125 to 30. The summary of the results is presented in 
Tables 1 and 2. The average testing MSE and R2 are 
obtained by taking the average of over 10 testing 
samples. The best performance is given by SVR after 
variable selection (Table 2) which has average testing 
MSE of 0.236 and average testing R2 of 0.627. 
Compared to using all variables (Table 1), there are 
52% reduction in the average MSE and 43% 
increasing in average R2. This decrease in error and 
increase in prediction is superior to previous results 
[18] using least square support vector machine (LS-
SVR), with 8 principal components as inputs.  That 
experiment [not shown] gave average MSE of 0.271 
and average R2 of 0.339.  
 
 
Table 1. Average MSE and R2 of testing with all 
variables (mm2) 

Method 
Average Testing   

MSE 
Average R2 

LP-SVR  0.5820 0.3751 
SVR 0.3592 0.4373 
BNN 0.7149 0.2822 
LR 0.7125 0.2263 

 

 

 

 

Table 2. MSE/R2 of testing for selected variables 
(mm2) 

Method 
Average Testing   

MSE 
Average Testing  

R2 

LP-SVR  0.5820 0.3751 
SVR 0.2360 0.6273 
BNN 0.4899 0.4817 
LR 0.4464 0.3845 
 
7. Summary and Conclusions 

Analysis of three-dimensional reflectivity 
patterns from the WSR-88D radar in Norman, OK for 
predicting rainfall rates are undertaken with LP-SVR, 
BNN and SVR. A 5 by 5 grid of 1 km boxes for the 
radar data is constructed, centered on the Chandler, 
OK Mesonet rain gauge. The goals of the research 
are variable selection and predictive data mining. 
From 125 variables, a reduction to 30 variables is 
possible using LP-SVR. This is a highly significant 
reduction resulting in a set of variables that enables. 
SVR to perform better compared to using all 
variables. Additionally, it is better than LP-SVR, 
BNN or the more traditional LR.  Accordingly, 
variable selection is an important step in achieving 
more accurate reflectivity-rainfall parameterization.  
The technique should be tested operationally to 
determine the ability to predict flash floods more 
accurately. 
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