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Abstract: - Over the last decade, evolutionary and meta-heuristic algorithms have been extensively used as 
search and optimization tools in various problem domains, including science, commerce, and engineering. 
Their broad applicability, ease of use, and global perspective may be considered as the primary reason for their 
success. Ant colony foraging behavior may also be considered as a typical swarm-based approach to 
optimization. In this paper, ant colony optimization algorithm (ACO) is presented and tested with few 
benchmark examples. To test the performance of the algorithm, three benchmarks constrained and/or 
unconstrained real valued mathematical models were selected. The first example is the Ackley's function 
which is a continuous and multimodal test function obtained by modulating an exponential function with a 
cosine wave of moderate amplitude. The algorithm application resulted in the global optimal with reasonable 
CPU time. To show the efficiency of the algorithm in constraint handling, the model was applied to a two-
variable, two constraint highly nonlinear problem. It was shown that the performance of the model is quite 
comparable with the results of well developed GA. The third example is a real world water resources operation 
optimization problem. The developed model was applied to a single reservoir with 60 periods with objective 
of minimizing the total square deviation from target demand. Results obtained are quit promising and 
compares well with the results of some other well-known heuristic approaches. 
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1   Introduction 
Ant colony optimization (ACO), called ant system 
(Colorni et al. 1991; Dorigo 1992), was inspired by 
studies of the behavior of ants (Deneubourg et al. 
1983). Ant algorithms were first proposed by Dorigo 
(1992) and Dorigo et al. (1996) as a multi-agent 
approach to different combinatorial optimization 
problems like the traveling salesman problem and 
the quadratic assignment problem. The ant-colony 
metaheuristic framework was introduced by Dorigo 
and Di Caro (1999), which enabled ACO to be 
applied to a range of combinatorial optimization 
problems. Dorigo et al. (2000) also reported the 
successful application of ACO algorithms to a 
number of bench-mark combinatorial optimization 
problems.  
In this paper a ant colony optimization algorithm is 
developed and its performance is tested using three 
well defined and highly nonlinear benchmark 
mathematical functions, as well as developing an 
optimum operation policy for a single reservoir. 

 
 
2   Ant colony optimization (ACO) 
algorithms: general aspects 
Ant colony algorithms have been founded on the 
observation of real ant colonies. By living in 
colonies, ants’ social behavior is directed more to 
the survival of the colony entity than to that of a 
single individual member of the colony. An 
interesting and significantly important behavior of 
ant colonies is their foraging behavior, and in 
particular, their ability to find the shortest route 
between their nest and a food source, realizing that 
they are almost blind. The path taken by individual 
ants from the nest, in search for a food source, is 
essentially random [4]. However, when they are 
traveling, ants deposit on the ground a substance 
called pheromone, forming a pheromone trail as an 
indirect communication means. By smelling the 
pheromone, there is a higher probability that the trail 
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with a higher pheromone concentration will be 
chosen. The pheromone trail allows ants to find their 
way back to the food source and vice versa. The trail 
is used by other ants to find the location of the food 
source located by their nest mates. It follows that 
when a number of paths is available from the nest to 
a food source, a colony of ants may be able to 
exploit the pheromone trail left by the individual 
members of the colony to discover the shortest path 
from the nest to the food source and back [6]. As 
more ants choose a path to follow, the pheromone 
on the path builds up, making it more attractive to 
other ants seeking food and hence more likely to be 
followed by other ants. 
In general, ACO algorithms employ a finite size of 
artificial agents with defined characteristics which 
collectively search for good quality solutions to the 
problem under consideration. Starting from an initial 
state selected according to some case-dependent 
criteria, each ant builds a solution which is similar to 
a chromosome in a genetic algorithm. While 
building its own solution, each ant collects 
information on its own performance and uses this 
information to modify the representation of the 
problem, as seen by the other ants [5]. The ant's 
internal states store information about the ant’s past 
behavior, which can be employed to compute the 
goodness/value of the generated solution. Artificial 
ants are permitted to release pheromone while 
developing a solution or after a solution has fully 
been developed, or both. The amount of pheromone 
deposited is made proportional to the goodness of 
the solution an artificial ant has developed (or is 
developing).   
Rapid drift of all the ants towards the same part of 
the search space is avoided by employing the 
stochastic component of the choice decision policy 
and the pheromone evaporation mechanism. To 
simulate pheromone evaporation, the pheromone 
persistence coefficient (ρ) is defined which enables 
greater exploration of the search space and 
minimizes the chance of premature convergence to 
suboptimal solutions (see Eq. 3). A probabilistic 
decision policy is also used by the ants to direct their 
search towards the most interesting regions of the 
search space. The level of stochasticity in the policy 
and the strength of the updates in the pheromone 
trail determine the balance between the exploration 
of new points in the state space and the exploitation 
of accumulated knowledge [5]. 
Let τij(t) be the  total pheromone deposited on path ij 
at time t, and ηij(t) be the heuristic value of path ij at 
time t according to the measure of the objective 
function. We define the transition probability from 
node i to node j at time period t as:  
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where α and β = parameters that control the relative 
importance of the pheromone trail versus a heuristic 
value. Let q be a random variable uniformly 
distributed over [0, 1], and q0 ∈  [0, 1] be a tunable 
parameter. The next node j that ant k chooses to go 
is:  
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where J = a random variable selected according to 
the probability distribution of  Pij(t). The pheromone 
trail is changed globally. Upon completion of a tour 
by all ants in the colony, the global trail updating is 
done as follows: 
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iteration

ij tt τρτρτ ∆+− ← .)().1()(                (3) 

where  0 ≤  ρ ≤  1; ρ =  evaporation (i.e., loss) rate; 
and the symbol  ←iteration is used to show the next 
iteration. 
 There are several definitions for )(tijτ∆  ([4], [5]). 
In this paper, we use three algorithms as: 
1.  Ant System (AS) algorithm 
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where Gk(m) = value of the objective function for 
the tour Tk(m) taken by the k-th ant at iteration m. 
2. Ant Colony System–Iteration Best (ACSib) 
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where )(mG ibk = value of the objective function for 
the ant taken the best tour at iteration m. 
3. Ant Colony System–Global Best (ACSgb) 
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where gbkG  = value of the objective function for the 
ant with the best performance within the past total 
iteration. 
 
 
3   Algorithm application 
To test the performance of the proposed algorithm, 
the model was applied to a few benchmark 
constrained and unconstrained mathematical 
optimization functions. Unconstrained optimization 
deals with the problem of minimizing or maximizing 
a function in the absence of any restrictions. 
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Ackley's function is a continuous and multi-modal 
test function obtained by modulating an exponential 
function with a cosine wave of moderate amplitude. 
Its topology is characterized by an almost flat outer 
region and a central hole or peak where modulations 
by cosine wave become more and more influential. 
Ackley's function is as follow: 
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Where 201 =c , 2.02 =c , π23 =c , and 71282.2=e .  
This function causes moderate complications to the 
search, since though a strictly local optimization 
algorithm that performs hill-climbing would surely 
get trapped in a local optimum. A search strategy 
that scans a slightly bigger neighborhood would be 
able to cross intervening valleys toward increasingly 
better optima. Therefore, Ackley's function provides 
one of the reasonable test cases for honey bees 
mating search algorithm. Employing the proposed 
ACO algorithm, the fitness value is 

0054617.),( *
2

*
1 −=xxf  was obtained as average of 10 

runs. Using GA, at the 1000th generation, the fitness 
value of  005456.),( *

2
*
1 −=xxf  has been obtained 

[8]. The best rate of convergence for 10 runs is 
presented in Figure (1). 
The second numerical example of unconstrained 
optimization problem is given as follows [8]: 
Maximize ++= )4sin(5.21),( 1121 xxxxf π   

)20sin( 22 xx π                                                         (10) 
1.120.3 1 ≤≤− x                                                     (11) 

8.51.4 2 ≤≤ x                                                         (12) 
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Fig. 1. The best rate of convergence of Ackley's 
function value by ACO. 
 
Again employing the proposed ACO algorithm, the 
best fitness value was obtained as of 38.53283. The 
best rate of convergence for 10 runs is presented in 

Figure (2).  
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Fig. 2. The best rate of convergence of second 
numerical example. 
 
Solving the same problem with GA, the best run was 
terminated after 1000 generations, obtaining the best 
fitness value as of 38.818208 [8]. 
To show the efficacy of this handling method, we 
apply ACO with this method to solve a two-variable, 
two-constraint NLP problem: 
Maximize 22

21
2

2
2
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The unconstrained objective function ),(1 21 xxf  has 
a minimum solution at (3, 2) with a function value 
equal to zero. However, due to the presence of 
constraints, this solution is no more feasible and 
constrained optimum solution is 

)381865.2,246826.2(* =x  with a function value 
equal to 59085.13*

1 =f . The feasible region is a 
narrow crescent-shaped region (approximately 0.7% 
of the total search space) with the optimum solution 
lying on the second constraint. Employing the same 
algorithm with, the best fitness value was obtained 
as 614285.13),( ** =xxf . 
 
 
4   ACO algorithm for optimum 
reservoir operation 
To apply ACO algorithms to a specific problem, the 
following steps have to be taken: (1) Problem 
representation as a graph or a similar structure easily 
covered by ants; (2) Assigning a heuristic preference 
to generated solutions at each time step (i.e., 
selected path by the ants); (3) Defining a fitness 
function to be optimized; and (4) Selection of an 
ACO algorithm to be applied to the problem. 
In optimum reservoir operation problem, links 
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between initial and final storage volumes at different 
periods form a graph which represents the system, 
determining the release at that period. 
The heuristic information on this problem is 
determined by considering the criterion as minimum 
deficit:  

[ ] ))()(/(1)( 2 ctDtRt ijij +−=η                           (17) 
where Rij(t) = release at period t, provided the initial 
and final storage volume at classes i and j, 
respectively; D(t) = demand of period t; and c = a 
constant to avoid irregularity (dividing by zero in 
Eq. 17.). To determine Rij(t), the continuity equation 
along with the following constraints, may be 
employed as: 

)()()( tLOSStISStR ijjiij −+−=                        (18a) 

maxmin SSS i ≤≤                                                   (18b) 

maxmin SSS j ≤≤                           (18c) 

11 += NTSS               (18d) 
where Si and Sj = initial and final storage volumes 
(class i and j), respectively; I(t) = inflow to the 
reservoir at time period t; LOSSij(t) = loss (e.g., 
evaporation) at period t provided that initial and 
final storage at classes i and j respectively; Smin and 
Smax = minimum and maximum storage allowed 
respectively; and NT= total number of periods. 
Using the transition rule (Eq. 2), each ant is free to 
choose the class of final storage (end-of-period 
storage), if it is feasible through the continuity 
equation and storage constraints (Eqs. 18). 
The fitness function is a measure of the goodness of 
the generated solutions according to the defined 
objective function. For this study, total square 
deviation (TSD) is defined as:  
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where Rk(t) = release at period t recommended by 
ant k and Dmax = maximum monthly demand. 
The Ant Colony System–Global Best algorithm 
(ACSgb), have been used. The so-called solution 
construction and pheromone trail update rule 
considered by this ACO algorithm are employed. 
To illustrate the performance of the model, the Dez 
reservoir in southern Iran, with an effective storage 
volume of 2,510 MCM and average annual demand 
of 5,900 MCM is selected. For illustration purposes, 
a period of 60 months with an average annual inflow 
of 5,303 MCM is employed. The reservoir volume is 
divided into 14 classes with 200 MCM intervals. To 
start with the model, a finite number of ants is 
randomly distributed in different classes of initial 
storage volume. It is also assumed that the starting 
point for ants could be any time along the 60-month 

operation horizon. Thus, ants are also uniformly 
random distributed along the operation horizon. 
Feasible paths for ants to follow are constrained by 
the continuity equation, and the minimum and 
maximum permitted storage volume (Eqs. 18). By 
completion of the first tour by all ants, there will be 
a finite number of feasible solutions with values for 
the objective function. Now, realizing the values of 
the fitness function, the pheromones must be 
updated to continue the next iteration. When the 
pheromone update is completed, the next iteration 
begins.  
In this paper, after tuning the parameters of the 
model, the best value of the parameter choose as 
follow: 
Number of ants=100; Number of iterations=500; 

10 =τ ; ρ= 0.25, α = 1, β = 4, and q0 = 0.9. 
The best overall result obtained from ACSgb for 
initial and final storage volumes of 1,430 MCM is 
1.296 (TSD). The global optimum with the same 
initial and final storage volumes resulted in TSD = 
1.273. Clearly, the developed model with the 
ACSgb algorithm for pheromone updating provides 
comparable results with those of global optimum, 
and seems promising in optimum reservoir 
operation. The fluctuation of reservoir release, taken 
from two models is presented in Fig. 3. Except for a 
few months, reservoir releases resulting from the 
proposed algorithm follow those of global optimum 
very well. 
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Fig. 3. Comparison of reservoir releases resulting 
from ACSgb and global optimum. 
 
 
5   Concluding remarks 
While walking from one point to another, ants 
deposit a substance called pheromone, forming a 
pheromone trail. It has been shown experimentally  
that this pheromone trail, once employed by a 
colony of ants, can give rise to the emergence of a 
shortest path. In general, the amount of pheromone 

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp188-192)



 

deposited is made proportional to the goodness of 
the solution an ant may build.  
Modeling ant colony behavior as an optimization 
algorithm and its application to few benchmarks, 
highly nonlinear-constrained and/or unconstrained 
optimization problems, such as well known Ackley's 
function, partially revels the high potential of the 
proposed algorithm to solve nonlinear optimization 
problems. Results obtained are well comparable 
with these obtained employing well developed GAs, 
is promising.  
The model performance in real world water 
management problems, such as reservoir operation, 
proved to be very promising. The problem may be 
approached by considering a time series of inflow, 
classifying the reservoir volume to several intervals, 
and deciding on the release at each period with 
respect to an optimality criterion. Feasible paths for 
ants to follow may be constrained by the continuity 
equation as well as constraints on the storage 
volume. Upon each tour completion, a finite number 
of feasible solutions will form, leaving a new value 
for the pheromone.  
Realizing the values of the fitness function, the 
pheromones will be updated by global and local 
update rules. Application of the proposed model to 
the Dez reservoir in Iran provided promising results. 
As for any search method, the performance of the 
proposed model is quite sensitive to setup 
parameters, hence fine tuning of the parameters is 
recommended. 
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Notations: 
The following symbols are used in this paper: 
ρ  : pheromone evaporation. 
Pij(t) : transition probability from node i to node j at 
time period t. 
τij(t) : total pheromone deposited on path ij at time t. 
ηij(t): the heuristic value of path ij at time t. 
α , β : parameters that control the relative 
importance of the pheromone trail versus a heuristic 
value. 
q : a random variable uniformly distributed over [0, 
1]. 
q0 : be a tunable parameter ∈  [0, 1]. 

0τ :  initial value of pheromone. 
)(tijτ∆  : total change in pheromone of path ij at time 

period t. 
)(tmk

ijτ  : change in pheromone of path ij at time 
period t associated to ant k. 
Gk(m) : value of the objective function of ant k at 
iteration m. 
Tk(m) : the tour taken by ant k at iteration m. 

)(mG ibk  : value of the objective function for the ant 
taken the best tour at iteration m. 

gbkG  : value of the objective function for the ant 
with the best performance within the past total 
iteration. 
Rij(t) : release at period t. 
D(t) : demand of period t. 
c : a constant. 
S : storage. 
I(t): inflow to the reservoir at time period t. 
LOSSij(t): loss (e.g., evaporation) at period t 
provided that initial and final storage at classes i and 
j respectively. 
Smin : minimum storage allowed. 
Smax : maximum storage allowed. 
NT: total number of periods. 
TSD: total square deviation. 
Rk(t): release at period t recommended by ant k. 
Dmax : maximum monthly demand.  
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