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Abstract: Meta-heuristics are an effective paradigm for solving large-scale combinatorial optimization 
problems. However, the development of such algorithms is often very time-consuming as they have to be 
designed for a concrete problem class with little or no opportunity for reuse. In this paper, we present a generic 
software framework that is able to handle different types of combinatorial optimization problems by 
coordinating so-called OptLets that work on a set of solutions to a problem. The framework provides a high 
degree of self-organization and offers a generic and concise interface to reduce the adaptation effort for new 
problems as well as to integrate with external systems. The performance of the OptLets framework is 
demonstrated by solving the well-known Traveling Salesman Problem. 
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1   Introduction 
Routing and scheduling problems are often used in 
the optimization community to demonstrate the 
applicability of newly developed optimization 
algorithms. Typical examples are the Traveling 
Salesman Problem (TSP), the Capacitated Vehicle 
Routing Problem (CVRP), and the Job Shop 
Scheduling Problem (JSSP). All these problems are 
combinatorial optimization problems that are 
classified as NP-hard and therefore hard to solve. 
     Many different meta-heuristics such as Tabu 
Search (TS), Simulated Annealing (SA), Genetic 
Algorithms (GA) and techniques inspired by nature 
such as Ant Colony Optimization (ACO) [1] and 
Particle Swarm [2] have been developed in order to 
overcome the complexity of this problem class and 
provide feasible solutions in reasonable time. These 
techniques exhibit some generic aspects, but specific 
problems must nevertheless be tackled with newly 
developed adaptations of the basic techniques. These 

adaptations are often non-trivial and require in-depth 
knowledge of the problem domain. 
     Hybrid algorithms try to combine the strengths of 
several techniques by eliminating their weaknesses. 
Such hybrid algorithms often outperform their 
predecessors with respect to performance and the 
quality of the final solution. Unfortunately, these 
approaches are often based on traditional algorithms 
and therefore also require cumbersome and time-
consuming adaptation for each concrete problem to 
be solved. 
     For practical use, we need a general optimization 
technique that lets us develop solvers for real-world 
problems with as little effort as possible. There, the 
framework concept comes into play. A framework 
for optimization tasks should be independent from 
the actual problem at hand, yet flexible and 
extensible enough to support rapid development of 
custom solvers for arbitrary problems. It should 
encapsulate the invariant parts from the problem-
specific ones. It should especially take care about 
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administration and monitoring of the optimization 
process so that the user can focus on the problem-
solving tasks without bothering with “administrative 
issues”. The framework should not be restricted to 
traditional techniques or certain predefined hybrid 
approaches; it should rather allow the user to 
implement any kind of algorithm that is suitable for 
tackling the concrete problem. The framework 
should be able to deliver good solutions as fast as 
possible by incrementally improving the quality of 
delivered solutions over time, so that the search 
process can be interrupted at any time.  
     There exist many different approaches for 
software frameworks that have been designed to 
cope with the challenges discussed above. For 
instance, OpenTS (OTS) [3] and the Tabu Search 
Framework (TSF) [4] encapsulate the functionality 
that is common to all TS variants. However, both 
approaches support only TS. EasyLocal++ [5] 
extends the ideas of OTS and TSF by supporting the 
TS as well as the SA meta-heuristic. But it supports 
only a predefined set of hybridization models so that 
new schemes cannot easily be integrated into the 
framework. HotFrame [6] is a more sophisticated 
framework supporting various meta-heuristics such 
as TS, SA and Evolutionary Algorithms (EAs). 
Hybridization is supported by using inheritance and 
genericity to separate the invariant from the 
problem-specific parts. HeuristicLab [7] is an 
optimization environment enabling the user to apply 
different optimization techniques (e.g. TS, SA, GA) 
to different problem classes (e.g. JSSP, TSP). 
However, the user always has to choose an 
appropriate technique in advance and cannot mix 
several existing techniques. Compared to the 
frameworks discussed so far, the A-Team 
framework [8] offers the highest degree of flexibility 
in problem-solving. The architecture is based on a 
network of software agents that work together in 
order to solve a concrete problem. The framework 
uses different types of agents that must be 
implemented for the specific problem.  
 
 
2   The OptLet Approach 
The OptLets framework is implemented in C++ and 
enables the use of different optimization paradigms 
as well as the combination of existing techniques. 
The framework takes care about the whole 
optimization process by selecting the currently best 
“technique” and manages the solutions produced 
over time. The user can concentrate on the problem 
without caring about any administrative issues. 
Users can easily create hybrid solvers and include 

arbitrary heuristic techniques. The effort for 
adapting the system to a new problem class is rather 
small, as the user has to implement only those 
features he really needs. The framework also 
enables the rapid and stepwise implementation of 
new problem-solving components by supporting 
experimental tests during the whole development 
cycle.  
     The development of new algorithms can be done 
in parallel and distributed to several developers. 
Each team member can contribute his or her ideas 
independently from others. 
 
 
3   The Framework Concept 
The basic assumption is that many optimization 
problems share common properties for which 
general algorithms can be implemented once, thus 
representing the invariant part. So, the user is able to 
concentrate on the optimization problem itself and 
can leave the administrative work to the framework. 
     The OptLets framework does not know anything 
about the problem to be solved. The user has to 
provide a problem description, the representation of 
solutions and the optimization entities called 
OptLets for a complete optimization system. 
 
 
3.1 Solutions 
The idea behind the framework is that an arbitrary 
optimization problem can be solved starting with 
one initial solution and then creating new solutions 
based on existing ones. 
     In the context of the OptLets framework, we use 
a relaxed definition of the term “solution”, not 
necessarily meaning a final solution to the problem. 
It would be actually more precise to speak about 
“candidate solutions” because a “solution” might be 
far from optimal or even trivial (e.g. an empty 
knapsack), incomplete or invalid.  
     The framework provides an abstract class for 
solutions. Value and validity are the key properties 
and must be specified by a problem-specific 
concrete solution class. The value specifies the 
solution quality (e.g. TSP tour length, profit of a 
knapsack). The invalidity describes how much a 
solution violates the given constraints. This allows 
the framework to compare invalid solutions by their 
“violation degree”. Depending on the problem, such 
invalid solutions are allowed as they might be good 
starting points for further improvement. 
     During the optimization process, many solutions 
are generated. Similar to the population-based 
approach of the Evolutionary Computation paradigm 
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[9], the OptLets framework keeps the solutions in a 
“solution pool”. Solutions in the pool are considered 
as read-only in the sense that an existing solution 
cannot be modified. Whenever a solution is used as 
a starting point, the framework creates a copy of the 
original solution and assigns it to a so-called OptLet 
that modifies this copy according to its optimization 
strategy. The new solution is then put back into the 
pool as another starting point for other OptLets.  
     The solution pool has a limited capacity so that it 
must be cleaned up occasionally. Whenever the pool 
becomes full, the framework evaluates all solutions 
and keeps only those that might be useful in the next 
iteration (where “iteration” is defined as the time 
between two clean-ups). The framework also keeps 
some invalid solutions as they can be modified to 
become valid. After the clean-up, the optimization 
process resumes by selecting existing solutions and 
assigning them to OptLets.  
 
 
3.2 OptLet 
An OptLet can be defined as problem-solving or 
optimization entity that produces a new solution 
based on an existing one.  
     The framework provides an abstract OptLet class 
containing those features that are common to all 
types of optimization problems. OptLets are always 
implemented for a concrete problem and contain 
optimization strategies how to modify and/or create 
a solution. In the sense of object-oriented 
programming, OptLets are strategy objects 
exhibiting a certain behavior defined by the user.  
     As the design and functionality of an OptLet is 
up to the user, it may represent different roles for 
solving an optimization problem. It could represent 
an external entity such as a customer who wants to 
have his order processed as early as possible. Or, it 
could concentrate on a particular aspect of a solution 
in order to improve a certain objective. An OptLet 
may also represent a constraint watcher, trying to fix 
invalid solutions. In general, an OptLet can be seen 
as an algorithm that “does something” to a solution. 
This operation can be anything from a small change 
to a complete heuristic algorithm for finding a good 
solution in a single step. Independently from the 
actual operation, the framework repeatedly selects 
an existing solution and lets an OptLet modify it. 
     The success of an optimization process depends 
on the combination of OptLets being used. The goal 
of the framework is to compute the best possible 
solution as fast as possible. So, selecting an OptLet 
is an important task of the framework as it has to 
decide which OptLet fits best for working on a given 
solution. The framework monitors the work of the 

OptLets by evaluating their success regarding the 
improvement of the solution quality. It selects more 
successful OptLets with a higher probability than 
less successful ones. In other words, the framework 
learns from past achievements and attempts to 
extrapolate them into the future. 
 
 
3.3 Architecture 
The OptLets framework uses abstraction and 
inheritance as primary mechanisms to build 
problem-specific components. The architecture 
encapsulates all framework internals against access 
from outside and provides narrow interfaces for 
connecting the problem-specific components as well 
as for communication with external systems.  
     Fig. 1 shows a simplified diagram of the major 
components of the OptLets framework. 
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Fig.1: Architecture of the OptLets framework 

 
The Optimization Engine is the central component 
of the OptLets framework. It controls the 
optimization process and represents the key 
connection point for external systems. As an OptLet 
works autonomously and has no knowledge about 
other OptLets, the framework administrates them via 
the OptLet Scheduler. This component coordinates 
the OptLets by distributing the work among them 
and deciding which OptLet should work on a given 
solution. The Solution Pool contains all solutions 
generated during an iteration and takes care of the 
clean-up process when the pool becomes full.  
     The OptLets framework provides several 
interfaces for connecting the problem-specific 
components. The abstract class Solution is used for 
specifying the representation of the solutions (data 
structures, operations). The OptLet component 
represents a generic interface for developing the 
individual OptLets. Typically, several OptLets are 
implemented for solving a concrete problem. The 
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Problem Description contains information about the 
problem to be solved (e.g. data structure, 
constraints) and is used by the Solution as well as by 
the OptLet components for gathering information in 
order to modify a solution. 
     For starting and controlling the optimization 
process, the OptLets framework provides an 
External Interface. 
 
 
4   Using the Framework 
Developing a problem-specific OptLets optimizer 
requires the following parts to be implemented: 
• Embedding into an external system 
• Representation of the problem description  
• Representation of solutions and operations to 

manipulate solutions 
• OptLets 

After the foundation (i.e., at least a simple user 
interface and representations of the problem 
description and the solution) has been implemented, 
the OptLets can be developed using evolutionary 
prototyping. One will typically start with a few 
simple OptLets, experiment with them and evaluate 
the results. Based on this experience, more OptLets 
can be added until the results are satisfying. 
 
 
4.1 Foundation 
Some kind of user interface is needed to run the 
optimizer. This can be anything from a simple 
command-line interface to a sophisticated GUI. The 
optimizer can also be embedded in larger systems. 
     Problem instances are represented by a problem 
description object. The framework does not know 
anything about the internal structure of this object; it 
just passes the object along to the OptLets. Defining 
an appropriate data structure and filling it with 
values (e.g. from a file) is up to the implementer of a 
problem-specific optimizer. 
     For the representation of solutions, it is necessary 
to define an appropriate data structure together with 
specific operations to manipulate a solution. In 
addition to that, a few operations required by the 
framework must be implemented. This includes 
methods for obtaining the solution value and degree 
of invalidity, comparing two solutions for equality 
and creating a copy of a solution object.  
 
 
4.2 OptLets 
An OptLet is implemented by deriving a concrete 
class from an abstract class in the framework and 
overriding the work method. This method receives a 

solution object from the framework and is expected 
to modify that solution in some way.  
     Depending on the problem, there are many 
different ways how an OptLet can modify a solution. 
OptLets can make very simple modifications (e.g. 
pack in an item into a knapsack or swap two 
locations in a tour) or encapsulate more complex 
algorithms (e.g. eliminate intersections in a tour). 
Usually, an OptLet will modify a solution in a way 
that is expected to improve some aspect of the 
solution, but it may also be reasonable to let OptLets 
apply random modifications (in order to escape from 
local optima) or even add OptLets that deliberately 
deteriorate solutions, hoping to create useful starting 
points for other Optlets. 
 
 
4.3 Strategies for developing OptLets 
It is recommended to start with simple OptLets. In 
many cases, already a few simple OptLets lead to 
acceptable results. Analyzing the results might give 
ideas for further, maybe more sophisticated OptLets. 
Generally, OptLets should not contain too complex 
algorithms. Optimization is done by letting all these 
simple OptLets work on solutions produced by other 
OptLets, controlled by the framework. It is desirable 
to obtain a high rate of OptLet invocations, which 
can only be achieved if individual OptLets do not 
consume too much time. 
     It is possible to implement special starting 
OptLets that are called only once or a few times at 
the beginning of the optimization and provide better 
initial solutions. These OptLets will typically use 
some sort of greedy strategy.  
     OptLets are well suited for being developed in a 
team, as they are completely independent from each 
other. As the success of an OptLet can be estimated 
by looking at statistics generated by the framework, 
developers can organize an “OptLet contest”, 
striving to create the most successful OptLets. 
 
 
5   Case studies and results 
We tested the framework with the well-known 
Knapsack Problem (KP) and Traveling Salesman 
Problem (TSP). Our primary goal was to show that 
good results can be achieved for these problems 
with simple OptLets, not to reach the global 
optimum or to outperform existing specialized 
solvers. The main focus of the framework are real-
world problems that are much more complex and 
often difficult to handle with traditional techniques. 
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5.1 Traveling Salesman Problem 
The TSP is one of the best investigated 
combinatorial optimization problems. Many sample 
problems with proven optimal solutions can be 
found in TSPLIB ([10]). So, we chose the TSP to 
evaluate the results of our framework. 
 
5.1.1   Implementation aspects 
The solution representation is a permutation of the 
locations, numbered from 1 to n. This representation 
does not allow invalid solutions. The initial solution 
just contains all locations in ascending order. 
     We implemented 26 OptLets which can be 
divided in three categories: 
• Swapping OptLets swap two locations. The 

OptLets differ in how they choose the locations 
to be swapped (e.g. by random, adjacent 
locations with the greatest distance, etc.) 

• Shifting OptLets shift a location or a sequence of 
locations within a tour, using different strategies. 

• Intersection removing OptLets try to detect and 
remove intersections within a tour, using 
different strategies. 

Furthermore, a starting OptLet produces solutions 
using a “nearest neighbor” heuristic, starting with a 
different location on each call, resulting in n 
different solutions for a problem with n locations. 
     A class hierarchy is used to group similar 
OptLets and concentrate common operations (e.g. 
finding an intersection) in abstract superclasses. No 
OptLet class (including the abstract superclasses) 
contains more than 80 lines of code; most contain 
only about 30 lines (not counting the header files). 
 
5.1.2   Results  
Generally, when plotting the evolution of the best 
solution value over time, we can observe a steep 
ascent in the beginning and slight improvements 
later on. Figure 2 shows a typical evolution of the 
solution value (the first 20 seconds for the ch150 
problem instance). 
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Fig.2: Evolution of the solution value 

 

Note that the tour length is represented as a negative 
value. This is because the OptLet framework always 
tries to maximize the solution value. The horizontal 
line at the top represents the global optimum. 
     For the results presented in this paper (see 
Table 1), we ran the optimizer 10 times per problem 
instance and for 3 minutes per run. We then looked 
at the intermediate results after 10 seconds, after 1 
minute and the final result after 3 minutes. The table 
shows how much the average values reached lie 
above the known optimum. The column “Opt.” 
shows in how many of the 10 runs the optimizer 
found the global optimum. For problems where the 
global optimum was reached on some runs, the 
average time needed to reach the optimum is given. 
The results were obtained on a Pentium 4 2.4GHz 
computer with 1024 MB RAM on Windows XP. 
  

Problem 10s 60s 180s Opt. Time 
berlin52 0% 0% 0% 10 0.39
eil101 0.70% 0.48% 0.41% 5 28.00
lin105 0.79% 0.28% 0.07% 8 48.11
ch150 0.62% 0.32% 0.32% 0
ts225 2.03% 1.29% 1.26% 0
lin318 6.41% 3.73% 2.74% 0
pcb442 11.25% 6.21% 4.25% 0
p654 15.86% 8.99% 5.43% 0

Table 1: TSP results 
 
For the smaller problems (up to 150 locations), we 
come very close to the optimum (<1%) within the 
first 10 seconds. The bigger the problem, the more 
time the OptLets need to work on a solution. For the 
largest problem listed in the table (654 locations), 
the average value after 3 minutes is about 5% above 
the optimum.  
 
5.2 Real-world problems 
So far, we tested the OptLets framework with two 
real-world problems and compared the results with 
existing solvers that are used in practice. 
     The first problem was optimizing the movements 
of a robot that places objects in a room. Here, the 
OptLets optimizer is able to produce solutions that 
are better than the ones produced by the practically 
used algorithm in most cases and comparable to the 
solutions produced by another specialized heuristic 
optimizer. 
     The second problem was the optimization of a 
production process in a steel mill. The optimizer is 
responsible for controlling the speeds of different 
aggregates and has to deal with several objectives 
(maximize the throughput, minimize speed changes) 
that are combined into a weighted sum to be 
maximized. Testing the optimizer with a simulator 
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showed that our results are comparable to that of the 
currently used and well-proven (LP-based) solver. 
     These two problems were chosen to be able to 
compare the OptLets framework with existing, 
practically used solvers. As the results are quite 
promising, the OptLets framework is a serious 
option for future real-world applications. 
 
5.3 Implementation effort 
Table 2 gives an overview about the number of 
OptLets used for each problem and the proportion of 
the problem-specific part (measured in net LOC) 
opposed to the invariant framework part for each 
optimizer. 
 

Problem OptLets specific invariant
Knapsack Problem  14  9.5%  90.5% 
Traveling Salesman  26  17.3%  82.7% 
Robot  14  23.8%  76.2% 
Steel Mill  27  35.8%  64.2% 

Table 2: Implementation effort 
 
The portion of the problem-specific parts becomes 
larger for more complex problems, but it still is 
much smaller than the problem-invariant part, 
represented by the framework.  
 
 
6   Conclusion 
In this paper, we presented OptLets, a generic 
framework for solving combinatorial optimization 
problems. The main benefit of the framework is that 
optimizers for arbitrary problems can be developed 
with little effort. 
     The central parts of an optimizer are OptLets that 
modify a solution in some way. OptLets can be very 
simple (and thus easy to implement). The 
optimization is done by letting many different 
OptLets work on a pool of solutions. Management 
of the solutions and selection of OptLets is done by 
the framework and does not bother the implementer 
of an OptLet. 
     First results can be achieved quickly, after 
developing a few simple OptLets. Then, developing 
an optimizer means adding more OptLets or 
tweaking existing ones until the results are 
satisfying.  
     OptLets are completely independent from each 
other and are therefore well suited for being 
developed in a team.  
     Experiments with both academic and real-world 
problems show that it is possible to achieve 
satisfying results with relatively simple OptLets. For 
two real-world applications, the OptLets-based 

optimizer was able to compete with existing solvers. 
This suggests that OptLets can be a promising 
alternative for dealing with hard combinatorial 
optimization problems, saving valuable development 
time. 
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