
OptLets: A Generic Framework for Solving Arbitrary Optimization
Problems*

CHRISTOPH BREITSCHOPF

Department of Business Informatics – Software Engineering
Johannes Kepler University Linz
Altenberger Straße 69, 4040 Linz

AUSTRIA
http://www.se.jku.at

GÜNTHER BLASCHEK, THOMAS SCHEIDL

Institute of Pervasive Computing
Johannes Kepler University Linz
Altenberger Straße 69, 4040 Linz

AUSTRIA
http://www.soft.uni-linz.at

Abstract: Meta-heuristics are an effective paradigm for solving large-scale combinatorial optimization
problems. However, the development of such algorithms is often very time-consuming as they have to be
designed for a concrete problem class with little or no opportunity for reuse. In this paper, we present a generic
software framework that is able to handle different types of combinatorial optimization problems by
coordinating so-called OptLets that work on a set of solutions to a problem. The framework provides a high
degree of self-organization and offers a generic and concise interface to reduce the adaptation effort for new
problems as well as to integrate with external systems. The performance of the OptLets framework is
demonstrated by solving the well-known Traveling Salesman Problem.

Key-Words: Meta-heuristics, Heuristics, Framework, Combinatorial optimization, Incremental optimization,
Knapsack Problem, Traveling Salesman Problem, Real-world problems

* This work was funded by Siemens AG, Corporate Technology, Munich.

1 Introduction
Routing and scheduling problems are often used in
the optimization community to demonstrate the
applicability of newly developed optimization
algorithms. Typical examples are the Traveling
Salesman Problem (TSP), the Capacitated Vehicle
Routing Problem (CVRP), and the Job Shop
Scheduling Problem (JSSP). All these problems are
combinatorial optimization problems that are
classified as NP-hard and therefore hard to solve.
 Many different meta-heuristics such as Tabu
Search (TS), Simulated Annealing (SA), Genetic
Algorithms (GA) and techniques inspired by nature
such as Ant Colony Optimization (ACO) [1] and
Particle Swarm [2] have been developed in order to
overcome the complexity of this problem class and
provide feasible solutions in reasonable time. These
techniques exhibit some generic aspects, but specific
problems must nevertheless be tackled with newly
developed adaptations of the basic techniques. These

adaptations are often non-trivial and require in-depth
knowledge of the problem domain.
 Hybrid algorithms try to combine the strengths of
several techniques by eliminating their weaknesses.
Such hybrid algorithms often outperform their
predecessors with respect to performance and the
quality of the final solution. Unfortunately, these
approaches are often based on traditional algorithms
and therefore also require cumbersome and time-
consuming adaptation for each concrete problem to
be solved.
 For practical use, we need a general optimization
technique that lets us develop solvers for real-world
problems with as little effort as possible. There, the
framework concept comes into play. A framework
for optimization tasks should be independent from
the actual problem at hand, yet flexible and
extensible enough to support rapid development of
custom solvers for arbitrary problems. It should
encapsulate the invariant parts from the problem-
specific ones. It should especially take care about

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp49-54)

administration and monitoring of the optimization
process so that the user can focus on the problem-
solving tasks without bothering with “administrative
issues”. The framework should not be restricted to
traditional techniques or certain predefined hybrid
approaches; it should rather allow the user to
implement any kind of algorithm that is suitable for
tackling the concrete problem. The framework
should be able to deliver good solutions as fast as
possible by incrementally improving the quality of
delivered solutions over time, so that the search
process can be interrupted at any time.
 There exist many different approaches for
software frameworks that have been designed to
cope with the challenges discussed above. For
instance, OpenTS (OTS) [3] and the Tabu Search
Framework (TSF) [4] encapsulate the functionality
that is common to all TS variants. However, both
approaches support only TS. EasyLocal++ [5]
extends the ideas of OTS and TSF by supporting the
TS as well as the SA meta-heuristic. But it supports
only a predefined set of hybridization models so that
new schemes cannot easily be integrated into the
framework. HotFrame [6] is a more sophisticated
framework supporting various meta-heuristics such
as TS, SA and Evolutionary Algorithms (EAs).
Hybridization is supported by using inheritance and
genericity to separate the invariant from the
problem-specific parts. HeuristicLab [7] is an
optimization environment enabling the user to apply
different optimization techniques (e.g. TS, SA, GA)
to different problem classes (e.g. JSSP, TSP).
However, the user always has to choose an
appropriate technique in advance and cannot mix
several existing techniques. Compared to the
frameworks discussed so far, the A-Team
framework [8] offers the highest degree of flexibility
in problem-solving. The architecture is based on a
network of software agents that work together in
order to solve a concrete problem. The framework
uses different types of agents that must be
implemented for the specific problem.

2 The OptLet Approach
The OptLets framework is implemented in C++ and
enables the use of different optimization paradigms
as well as the combination of existing techniques.
The framework takes care about the whole
optimization process by selecting the currently best
“technique” and manages the solutions produced
over time. The user can concentrate on the problem
without caring about any administrative issues.
Users can easily create hybrid solvers and include

arbitrary heuristic techniques. The effort for
adapting the system to a new problem class is rather
small, as the user has to implement only those
features he really needs. The framework also
enables the rapid and stepwise implementation of
new problem-solving components by supporting
experimental tests during the whole development
cycle.
 The development of new algorithms can be done
in parallel and distributed to several developers.
Each team member can contribute his or her ideas
independently from others.

3 The Framework Concept
The basic assumption is that many optimization
problems share common properties for which
general algorithms can be implemented once, thus
representing the invariant part. So, the user is able to
concentrate on the optimization problem itself and
can leave the administrative work to the framework.
 The OptLets framework does not know anything
about the problem to be solved. The user has to
provide a problem description, the representation of
solutions and the optimization entities called
OptLets for a complete optimization system.

3.1 Solutions
The idea behind the framework is that an arbitrary
optimization problem can be solved starting with
one initial solution and then creating new solutions
based on existing ones.
 In the context of the OptLets framework, we use
a relaxed definition of the term “solution”, not
necessarily meaning a final solution to the problem.
It would be actually more precise to speak about
“candidate solutions” because a “solution” might be
far from optimal or even trivial (e.g. an empty
knapsack), incomplete or invalid.
 The framework provides an abstract class for
solutions. Value and validity are the key properties
and must be specified by a problem-specific
concrete solution class. The value specifies the
solution quality (e.g. TSP tour length, profit of a
knapsack). The invalidity describes how much a
solution violates the given constraints. This allows
the framework to compare invalid solutions by their
“violation degree”. Depending on the problem, such
invalid solutions are allowed as they might be good
starting points for further improvement.
 During the optimization process, many solutions
are generated. Similar to the population-based
approach of the Evolutionary Computation paradigm

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp49-54)

[9], the OptLets framework keeps the solutions in a
“solution pool”. Solutions in the pool are considered
as read-only in the sense that an existing solution
cannot be modified. Whenever a solution is used as
a starting point, the framework creates a copy of the
original solution and assigns it to a so-called OptLet
that modifies this copy according to its optimization
strategy. The new solution is then put back into the
pool as another starting point for other OptLets.
 The solution pool has a limited capacity so that it
must be cleaned up occasionally. Whenever the pool
becomes full, the framework evaluates all solutions
and keeps only those that might be useful in the next
iteration (where “iteration” is defined as the time
between two clean-ups). The framework also keeps
some invalid solutions as they can be modified to
become valid. After the clean-up, the optimization
process resumes by selecting existing solutions and
assigning them to OptLets.

3.2 OptLet
An OptLet can be defined as problem-solving or
optimization entity that produces a new solution
based on an existing one.
 The framework provides an abstract OptLet class
containing those features that are common to all
types of optimization problems. OptLets are always
implemented for a concrete problem and contain
optimization strategies how to modify and/or create
a solution. In the sense of object-oriented
programming, OptLets are strategy objects
exhibiting a certain behavior defined by the user.
 As the design and functionality of an OptLet is
up to the user, it may represent different roles for
solving an optimization problem. It could represent
an external entity such as a customer who wants to
have his order processed as early as possible. Or, it
could concentrate on a particular aspect of a solution
in order to improve a certain objective. An OptLet
may also represent a constraint watcher, trying to fix
invalid solutions. In general, an OptLet can be seen
as an algorithm that “does something” to a solution.
This operation can be anything from a small change
to a complete heuristic algorithm for finding a good
solution in a single step. Independently from the
actual operation, the framework repeatedly selects
an existing solution and lets an OptLet modify it.
 The success of an optimization process depends
on the combination of OptLets being used. The goal
of the framework is to compute the best possible
solution as fast as possible. So, selecting an OptLet
is an important task of the framework as it has to
decide which OptLet fits best for working on a given
solution. The framework monitors the work of the

OptLets by evaluating their success regarding the
improvement of the solution quality. It selects more
successful OptLets with a higher probability than
less successful ones. In other words, the framework
learns from past achievements and attempts to
extrapolate them into the future.

3.3 Architecture
The OptLets framework uses abstraction and
inheritance as primary mechanisms to build
problem-specific components. The architecture
encapsulates all framework internals against access
from outside and provides narrow interfaces for
connecting the problem-specific components as well
as for communication with external systems.
 Fig. 1 shows a simplified diagram of the major
components of the OptLets framework.

External Interface

Optimization
Engine

Solution
Pool

OptLet
Scheduler

External System

Solution OptLet

Problem Description

O
pt

Le
ts

 F
ra

m
ew

or
k

Fig.1: Architecture of the OptLets framework

The Optimization Engine is the central component
of the OptLets framework. It controls the
optimization process and represents the key
connection point for external systems. As an OptLet
works autonomously and has no knowledge about
other OptLets, the framework administrates them via
the OptLet Scheduler. This component coordinates
the OptLets by distributing the work among them
and deciding which OptLet should work on a given
solution. The Solution Pool contains all solutions
generated during an iteration and takes care of the
clean-up process when the pool becomes full.
 The OptLets framework provides several
interfaces for connecting the problem-specific
components. The abstract class Solution is used for
specifying the representation of the solutions (data
structures, operations). The OptLet component
represents a generic interface for developing the
individual OptLets. Typically, several OptLets are
implemented for solving a concrete problem. The

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp49-54)

Problem Description contains information about the
problem to be solved (e.g. data structure,
constraints) and is used by the Solution as well as by
the OptLet components for gathering information in
order to modify a solution.
 For starting and controlling the optimization
process, the OptLets framework provides an
External Interface.

4 Using the Framework
Developing a problem-specific OptLets optimizer
requires the following parts to be implemented:
• Embedding into an external system
• Representation of the problem description
• Representation of solutions and operations to

manipulate solutions
• OptLets

After the foundation (i.e., at least a simple user
interface and representations of the problem
description and the solution) has been implemented,
the OptLets can be developed using evolutionary
prototyping. One will typically start with a few
simple OptLets, experiment with them and evaluate
the results. Based on this experience, more OptLets
can be added until the results are satisfying.

4.1 Foundation
Some kind of user interface is needed to run the
optimizer. This can be anything from a simple
command-line interface to a sophisticated GUI. The
optimizer can also be embedded in larger systems.
 Problem instances are represented by a problem
description object. The framework does not know
anything about the internal structure of this object; it
just passes the object along to the OptLets. Defining
an appropriate data structure and filling it with
values (e.g. from a file) is up to the implementer of a
problem-specific optimizer.
 For the representation of solutions, it is necessary
to define an appropriate data structure together with
specific operations to manipulate a solution. In
addition to that, a few operations required by the
framework must be implemented. This includes
methods for obtaining the solution value and degree
of invalidity, comparing two solutions for equality
and creating a copy of a solution object.

4.2 OptLets
An OptLet is implemented by deriving a concrete
class from an abstract class in the framework and
overriding the work method. This method receives a

solution object from the framework and is expected
to modify that solution in some way.
 Depending on the problem, there are many
different ways how an OptLet can modify a solution.
OptLets can make very simple modifications (e.g.
pack in an item into a knapsack or swap two
locations in a tour) or encapsulate more complex
algorithms (e.g. eliminate intersections in a tour).
Usually, an OptLet will modify a solution in a way
that is expected to improve some aspect of the
solution, but it may also be reasonable to let OptLets
apply random modifications (in order to escape from
local optima) or even add OptLets that deliberately
deteriorate solutions, hoping to create useful starting
points for other Optlets.

4.3 Strategies for developing OptLets
It is recommended to start with simple OptLets. In
many cases, already a few simple OptLets lead to
acceptable results. Analyzing the results might give
ideas for further, maybe more sophisticated OptLets.
Generally, OptLets should not contain too complex
algorithms. Optimization is done by letting all these
simple OptLets work on solutions produced by other
OptLets, controlled by the framework. It is desirable
to obtain a high rate of OptLet invocations, which
can only be achieved if individual OptLets do not
consume too much time.
 It is possible to implement special starting
OptLets that are called only once or a few times at
the beginning of the optimization and provide better
initial solutions. These OptLets will typically use
some sort of greedy strategy.
 OptLets are well suited for being developed in a
team, as they are completely independent from each
other. As the success of an OptLet can be estimated
by looking at statistics generated by the framework,
developers can organize an “OptLet contest”,
striving to create the most successful OptLets.

5 Case studies and results
We tested the framework with the well-known
Knapsack Problem (KP) and Traveling Salesman
Problem (TSP). Our primary goal was to show that
good results can be achieved for these problems
with simple OptLets, not to reach the global
optimum or to outperform existing specialized
solvers. The main focus of the framework are real-
world problems that are much more complex and
often difficult to handle with traditional techniques.

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp49-54)

5.1 Traveling Salesman Problem
The TSP is one of the best investigated
combinatorial optimization problems. Many sample
problems with proven optimal solutions can be
found in TSPLIB ([10]). So, we chose the TSP to
evaluate the results of our framework.

5.1.1 Implementation aspects
The solution representation is a permutation of the
locations, numbered from 1 to n. This representation
does not allow invalid solutions. The initial solution
just contains all locations in ascending order.
 We implemented 26 OptLets which can be
divided in three categories:
• Swapping OptLets swap two locations. The

OptLets differ in how they choose the locations
to be swapped (e.g. by random, adjacent
locations with the greatest distance, etc.)

• Shifting OptLets shift a location or a sequence of
locations within a tour, using different strategies.

• Intersection removing OptLets try to detect and
remove intersections within a tour, using
different strategies.

Furthermore, a starting OptLet produces solutions
using a “nearest neighbor” heuristic, starting with a
different location on each call, resulting in n
different solutions for a problem with n locations.
 A class hierarchy is used to group similar
OptLets and concentrate common operations (e.g.
finding an intersection) in abstract superclasses. No
OptLet class (including the abstract superclasses)
contains more than 80 lines of code; most contain
only about 30 lines (not counting the header files).

5.1.2 Results
Generally, when plotting the evolution of the best
solution value over time, we can observe a steep
ascent in the beginning and slight improvements
later on. Figure 2 shows a typical evolution of the
solution value (the first 20 seconds for the ch150
problem instance).

-7200

-7100

-7000

-6900

-6800

-6700

-6600

0 5 10 15 20

Time (sec.)

Va
lu

e

global optimum: 6528

best solution found: 6549

Fig.2: Evolution of the solution value

Note that the tour length is represented as a negative
value. This is because the OptLet framework always
tries to maximize the solution value. The horizontal
line at the top represents the global optimum.
 For the results presented in this paper (see
Table 1), we ran the optimizer 10 times per problem
instance and for 3 minutes per run. We then looked
at the intermediate results after 10 seconds, after 1
minute and the final result after 3 minutes. The table
shows how much the average values reached lie
above the known optimum. The column “Opt.”
shows in how many of the 10 runs the optimizer
found the global optimum. For problems where the
global optimum was reached on some runs, the
average time needed to reach the optimum is given.
The results were obtained on a Pentium 4 2.4GHz
computer with 1024 MB RAM on Windows XP.

Problem 10s 60s 180s Opt. Time
berlin52 0% 0% 0% 10 0.39
eil101 0.70% 0.48% 0.41% 5 28.00
lin105 0.79% 0.28% 0.07% 8 48.11
ch150 0.62% 0.32% 0.32% 0
ts225 2.03% 1.29% 1.26% 0
lin318 6.41% 3.73% 2.74% 0
pcb442 11.25% 6.21% 4.25% 0
p654 15.86% 8.99% 5.43% 0

Table 1: TSP results

For the smaller problems (up to 150 locations), we
come very close to the optimum (<1%) within the
first 10 seconds. The bigger the problem, the more
time the OptLets need to work on a solution. For the
largest problem listed in the table (654 locations),
the average value after 3 minutes is about 5% above
the optimum.

5.2 Real-world problems
So far, we tested the OptLets framework with two
real-world problems and compared the results with
existing solvers that are used in practice.
 The first problem was optimizing the movements
of a robot that places objects in a room. Here, the
OptLets optimizer is able to produce solutions that
are better than the ones produced by the practically
used algorithm in most cases and comparable to the
solutions produced by another specialized heuristic
optimizer.
 The second problem was the optimization of a
production process in a steel mill. The optimizer is
responsible for controlling the speeds of different
aggregates and has to deal with several objectives
(maximize the throughput, minimize speed changes)
that are combined into a weighted sum to be
maximized. Testing the optimizer with a simulator

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp49-54)

showed that our results are comparable to that of the
currently used and well-proven (LP-based) solver.
 These two problems were chosen to be able to
compare the OptLets framework with existing,
practically used solvers. As the results are quite
promising, the OptLets framework is a serious
option for future real-world applications.

5.3 Implementation effort
Table 2 gives an overview about the number of
OptLets used for each problem and the proportion of
the problem-specific part (measured in net LOC)
opposed to the invariant framework part for each
optimizer.

Problem OptLets specific invariant
Knapsack Problem 14 9.5% 90.5%
Traveling Salesman 26 17.3% 82.7%
Robot 14 23.8% 76.2%
Steel Mill 27 35.8% 64.2%

Table 2: Implementation effort

The portion of the problem-specific parts becomes
larger for more complex problems, but it still is
much smaller than the problem-invariant part,
represented by the framework.

6 Conclusion
In this paper, we presented OptLets, a generic
framework for solving combinatorial optimization
problems. The main benefit of the framework is that
optimizers for arbitrary problems can be developed
with little effort.
 The central parts of an optimizer are OptLets that
modify a solution in some way. OptLets can be very
simple (and thus easy to implement). The
optimization is done by letting many different
OptLets work on a pool of solutions. Management
of the solutions and selection of OptLets is done by
the framework and does not bother the implementer
of an OptLet.
 First results can be achieved quickly, after
developing a few simple OptLets. Then, developing
an optimizer means adding more OptLets or
tweaking existing ones until the results are
satisfying.
 OptLets are completely independent from each
other and are therefore well suited for being
developed in a team.
 Experiments with both academic and real-world
problems show that it is possible to achieve
satisfying results with relatively simple OptLets. For
two real-world applications, the OptLets-based

optimizer was able to compete with existing solvers.
This suggests that OptLets can be a promising
alternative for dealing with hard combinatorial
optimization problems, saving valuable development
time.

References:
[1] Dorigo M., Stützle T., Ant Colony Optimization,

The MIT Press, 2004.
[2] Parsopoulos K., Vrahatis M., Particle Swarm

Optimization Method for Constrained
Optimization Problems, In Sincak P., Vascak J.,
Kvasnicka V., Pospichal J. (Eds.), Intelligent
Technologies – Theory and Application: New
Trends in Intelligent Technologies, Vol. 76 of
Frontiers in Artificial Intelligence and
Applications, IOS Press, 2002, pp. 214-220.

[3] Harder R., OpenTS – Java Tabu Search
Framework, Online: http://opents.iharder.net,
2001.

[4] Lau H. C., Wan W. C., Jia X., A Generic
Object-Oriented Tabu Search Framework,
Proceedings of the 5th Metaheuristics
International Conference, (MIC'03), 2003, pp.
362-367.

[5] Gaspero L., Schärf A., EasyLocal++: An object-
oriented framework for the flexible design of
local-search algorithms, Software: Practice and
Experience, Vol. 33, 2003, pp. 733-765.

[6] Fink A., Voß S., HotFrame: A Heuristic
Optimization Framework, In Voß, S., Woodruff,
D. (Eds.), Optimization Software Class
Libraries, Kluwer Academic Publishers, 2002,
pp. 81-154.

[7] Wagner S., Affenzeller M., HeuristicLab: A
Generic and Extensible Optimization
Environment, Proceedings of the International
Conference on Adaptive and Natural Computing
Algorithms (ICANNGA), 2005.

[8] Rachlin J., Goodwin R., Murthy S., Akkijaru R.;
Wu F., Kumaran S., Das R., A-Teams: An Agent
Architecture for Optimization and Decision
Support, Lecture Notes In Computer Science.
Proceedings of the 5th International Workshop
on Intelligent Agents V, Agent Theories,
Architectures, and Languages, Springer, 1998,
pp. 261-276.

[9] Goldberg D., The Design of Innovation, Kluwer
Academic Publishers, 2002.

[10] TSPLIB, Online: http://www.iwr.uni-
heidelberg.de/groups/comopt/software/
TSPLIB95

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp49-54)

