
Compiler design for Fuzzy Classifier Systems 

Jenny Menolascina, Jose Aguilar-Castro,  Francklin Rivas-Echeverría 

Universidad de Los Andes 

Facultad de Ingeniería 

Escuela de Ingeniería de Sistemas 

Mérida, Venezuela 5101 

 
 

Abstract:- A Rule Compiler design for Fuzzy Classifier Systems is described in this paper. The design of the 

compiler is based on the building of Grammars described like predicates, which represent the system rules. The 

ANTLR tool (Another Tool for Language Recognition) is used for the implementation of the compiler. We 

propose also an interface that makes easier to the user the task of writing, compiling and administering the rules 

stored in the Knowledge Base. 

Key Words:- Fuzzy Classifier Systems, Fuzzy Logic, Expert Systems, Compiler. 

 

1 Introduction 

In our life we find several complex situations 

commanded by rules: control systems, safety 

systems, bank transactions, etc. Rule-based systems 

are an efficient tool to deal with these specific 

problems. The Knowledge Base contains the 

variables and the rules defining the problem, ant the 

inference engine obtains the conclusions through 

the application of classic logic to these rules. A rule 

is defined –in our field of work- as a “If premise, 

then conclusion” structure, where premise and 

conclusion are expressions which can be based on 

fuzzy logic, with one or more affirmative 

statements, connected via logic operators like 

“AND”, “OR” or “NOT”.  

Since its appearance in the sixties, Fuzzy Logic 

applications have earned consolidation [3, 4]. They 
are found in solutions for industrial control 

problems, time series prediction, Operative 

Research, maintenance strategies, search methods 

in databases, and so on. Probably, the main reasons 

to such vast array of applications are the conceptual 

simplicity of the fuzzy systems, their ability to 

combine in a unified manner the linguistic 

expressions with numeric data, and their 

implementation without sophisticated algorithms. 

Particularly, it is possible to use Fuzzy Classifier 

Systems (FCS) in situations that imply uncertainty 

and incomplete or complex information 

management [2]. The FCS are a type of learning 
machine that uses rules based on Fuzzy Logic for 

modeling a problem. 

The main objective of this paper is to develop a 

rule compiler that can be used by Expert Systems 

and FCS. This is achieved through the utilization of 

the ANTLR language (Another Tool for Language 

Recognition) [2], which generates compilers from a 

grammar specification of the language to be 

recognized. Hence, one of the main contributions of 

this paper is the proposal of a grammatical structure 

that defines how the rules should be. Our system is 

developed using Java [9], and defines an interactive 

interface, which allows the user, in a comfortable 

and practical way, to use the system. This paper is a 

part of the project named “Computational Platform 

for the development of Expert Systems and Fuzzy 

Systems” [8].  
This paper presents only the rule compiler’s 

design for the FCS. In order to study the Expert 

System please refer to [7]. This article is organized 
as follows: section 2 introduces the Theoretical 

Framework, section 3 describes the System Design, 

section 4 presents a Study Case, and finally in 

section 5, we present the Conclusions and 

Limitations found, as well as the possible eventual 

further works. 

2 Theoretical Framework 

2.1 Fuzzy Logic 

Fuzzy Logic is, essentially, the incorporation of 

the concept of multivalued logic [2, 3, 4]. Human 

reasoning uses truth values that are not necessarily 

determining (statements with just true or false 

values). For instance, when it is said that “The sky 

Proceedings of the 6th WSEAS Int. Conf. on FUZZY SYSTEMS, Lisbon, Portugal, June 16-18, 2005 (pp23-28)



is blue”, it could be possible to think how blue the 

sky is indeed. Likewise, it would be possible to 

think “if a vehicle moves fast”, it would be possible 

to think how fast it moves, since this last 

observation does not imply necessarily the 

quantification of speed with the accuracy required.  

The adjective “fuzzy” is due to the fact that the 

non-determining truth values used in them have, 

generally, an uncertainty meaning. A half-full glass, 

notwithstanding the fact that it is also half-empty, is 

not totally full nor totally empty. This is the type of 

indeterminate properties that we can manage with 

fuzzy theory.  

A Fuzzy System can be developed based on a 

set of heuristic rules, in which the inputs and 

outputs linguistic variables are represented by fuzzy 

sets. The following figure shows the main 

components [3]: 
 

Reasoning Mechanism

  Knowledge Base

Defuzzification

Mechanism

Fuzzification

Mechanism
x y

Figure 1. Fuzzy Logic System Scheme 

 

A Fuzzy System is composed of a mechanism 

that transforms discreet data into Fuzzy data 

(fuzzification mechanism), another mechanism that 

makes the inverse process based on one of the 

classic techniques of defuzzification, such as the 

centroid method, a knowledge base that stores the 

Fuzzy rules, and the mechanism of Fuzzy 

reasoning.  

2.2. Fuzzy Classifier System 

One of the most important challenges in the 

Intelligent Computing area consists of modelling 

intelligent behavior through the use of Intelligent 

Techniques (Artificial Neural Networks, Genetic 

Algorithms, etc.). The systems that attempt to 

model intelligent behaviors similar to the humans’ 

belong to the area known as Learning Machines [2, 

8]. The FCSs are a type of Learning Machine based 

on Fuzzy Logic.  

The FCSs try to imitate the way in which 

human beings make decisions. These systems are 

generally robust and tolerant to imprecision and 

noises in the input data. The FCSs apply the Fuzzy 

Logic with the aim of imitating human reasoning in 

computers. In order to achieve this goal, 

mathematic theory based on fuzzy set is used to 

map subjective notions, such as hot, warm, cold, to 

concrete values that can be manipulated by 

computers. A FCS is composed of the following 

elements (see Figure 2):  

 

Reasoning Mechanism

Credit Assignation Adaptation System

Detector Actuator

Fuzzy Rules

Figure 2. Fuzzy Classifier System Scheme 

A message detector system is the responsible of 

the information fuzzification. An actuator system 

generates the commands derived from the reasoning 

process of the system. It also performs 

defuzzification tasks, in case of being required. The 

Fuzzy Rules System has a Fuzzy reasoning 

mechanism that takes such rules and the messages 

provenient from the exterior to perform the 

inference process. The Adaptative System allows 

the generation or removal of rules in the rules 

system, in accordance with their quality. Those 

rules that are not suitable for the environment 

where the FCS is operating must be discarded and 

the combination of the best rules generates new 

rules. In order to determine the non-suitable rules 

and the best ones, the Credit Assignment System is 

used. This system gives points to each rule, taking 

into account if it is activated or activates others 

rules when a requirement (message) arrives to the 

FCS.  

2.3. Compiler     

A translator is any program that takes as input a 

text written in a language –called source- and gives 

as output a different text in a language called 

object. The translator is called a compiler if the 

language is of programming high level, and the 

object is a low level language (assembler or 

machine code) [5, 6]. 

The compiler, besides translating, performs 

other series of operations that, mostly, are focused 

on the errors detection in the source program. A 

compilation is constituted by the following phases 

[5, 6].  

Proceedings of the 6th WSEAS Int. Conf. on FUZZY SYSTEMS, Lisbon, Portugal, June 16-18, 2005 (pp23-28)



Lexical Analyzer: The Lexical Analyzer, also called 

scanner, detects basic units of information in the 

source program that belong to the language. These 

units are called tokens or lexic units. A token is an 

element of the source language that has its own 

meaning. It can be the reserved words of a 

language, identifiers, operators, etc. Some examples 

of lexical errors can be the reserved words spelled 

in a wrong way, not allowed identifiers, etc.  

Syntax Analyzer: The Syntax Analyzer or parser 

takes the tokens received from the scanner and 

searches in it the possible syntax errors that could 

appear.  

Semantic Analyzer: The Semantic Analyzer 

completes the two previous phases, incorporating 

certain proofs that can not be assimilated to the 

simple recognition of a chain. For example, not 

declared variables or an operator applied to a non-

compatible operating agent. 

Error-Handle: its mission is to try to correct the 

errors found in the different phases of the 

compilation. The types of errors that a program can 

have are the following: lexical, syntax, semantic 

and logic errors (those due to the performance of 

something wrong for the problem to be solved), 

execution errors (Examples of this type of errors 

are: division by zero (0), reading from a not open 

file, or without any information, etc.).  

 

3 System Design 

The Computational Platform for the Fuzzy 

Classifier is shown below (See figure 3). 

 

 
KNOWLEDGE 

BASE 

 
FACT 
BASE 

INFERENCE ENGINE 

COMPILER 

RULE EDITOR  

ADAPTATIVE SYSTEM 

ENVIRONMENT 

 

Figure 3 Fuzzy Classifier System Modular Design 

The system is composed of various sub-systems 

[8]: the Rule Edition Sub-system, composed by the 

Compiler and the Rule Editor; the Rule Performance 

and Adaptation Sub-systems, which contain, 

respectively, the Inference Engine and the 

Adaptative System. Finally, the Information Storage 

contains the Knowledge Base and the Fact Base. 

The Inference Engine starts the Fuzzy reasoning 

process taking the system input variables and 

verifying the rules that are activated (Knowledge 

Base). The Fuzzy reasoning mechanism used is the 

classic “Modus Ponens” [8]. The Adaptative System 

updates automatically the set of rules, in accordance 

with the usage they have during the functioning of 

the system.  

The Edition Sub-system is composed by the 

following components [7]: 

1. A compiler, it performs the Lexic, Syntax and 

Semantic Analyses of the rules. 

2. A Rule Editor, the interface used to write the 

rules. 

The Knowledge and Rules Bases are used either 

by the compiler and the Rule Editor.  

3.1 Compiler  

It has the following architecture:  

 

GRAMMAR 
STRUCTURE 

SEMANTIC 
STRUCTURE 

LEXIC STRUCTURE  LEXICAL ANALYSIS  

SYNTAX ANALYSIS 

SEMANTIC ANALYSIS 

 

Figure 4. Compiler Architecture 

This paper explains the Fuzzy Classifier System 

compiler design. The compiler of the Expert 

Systems is simpler (See [7]). 

a) LEXIC STRUCTURE 

It is composed by lexic components. An 

example is shown below: 

id → letter(letter|digit)* 

letter → ['A'-'Z''a'-'z''_'] 

digit → ['0'-'9'] 

b) GRAMMAR STRUCTURE 

The language used for specifying the Fuzzy 

Classifier System follows the Grammar shown next 

(the grammar is described by a set of production 

rules, whose initial production is sd_rule.  

Proceedings of the 6th WSEAS Int. Conf. on FUZZY SYSTEMS, Lisbon, Portugal, June 16-18, 2005 (pp23-28)



 

 

sd_rule → IF fuzzy_prop_list                        

THEN  

fuzzy_prop_list EOF 

fuzzy_prop_list → fuzzy_prop((OP_Y|OP_O|OP

_Ym| OP_Om) fuzzy_prop)* 

Fuzzy_Proa → (OP_NO|OP_NOm)? frase 

Frase → Fuzzy_atribute IS value 

Fuzzy_atribute → ID 

Value → ID 

c) SEMANTIC STRUCTURE 

In this system, variables are Fuzzy and each 

one of them has a linguistic value set associated. 

Our system has input variables (that can be used 

only in the premises side), or input/output variables 

(they can be used in both sides). The semantic 

verifications performed allow the compiler to be 

sure about the following aspects:  

o Variables should exist in the Knowledge Base. 

o The linguistic values correspondent to the 

Fuzzy Sets used. 

o The premise of a rule should not be equivalent 

to the consequent of it. 

o The input variables should not appear in the 

consequent nor the output variables in the 

premises side. 

In order to make the compiler, the ANTLR tool 

was used. This tool uses the LL(k) algorithm for the 

lexic, syntax and semantic analyses [1]. Hence, this 

tool integrates the generation of lexic, syntax and 

semantic analyses. The LL(k) algorithm works with 

grammar. That is, the structures previously shown 

should be given to the tool. This algorithm 

examines the input from left to right. The LL(k) 

algorithm is implemented through the definition of 

a function for each rules of production. 

The ANTLR receives files with the .g extension, 

which describe the grammar of the language to be 

compiled. This tool uses these files to generate new 

ones, written in Java language, which contain 

classes to perform each one of the compiler’s phases 

[1]. Hence, the compiler is composed by classes 

generated through the use of the ANTLR, which are: 

RuleParserSD, RuleLexerSD, RecontreeSD, 

RuleParserSD and RecontreeSD. They are stored in 

the GraGeneralSD.g and GraDSem.g files. It is also 

done similarly for the compiler of Expert Systems 

(See [7]). 
3.2. Rules Editor 

The Rules Editor is part of the general system 

interface. It contains the rules stored to be modified, 

delete, allows building the new one for the Fuzzy 

Classifier System. We access to the Rules Editor 

through the Designer’s panel, which, at the same 

time, can be accessed from the System’s main 

panel. 

Figure 5 shows the Main Panel. The left side 

presents all the Knowledge Bases, either for the 

Expert Systems or Fuzzy Classifier Systems. 

Figure 5.  Main Panel. 

In order to open the Designer’s panel a 

Knowledge Base is selected from the main panel, 

then, the login and the password of a Designer user 

is required. At the moment of pressing the “Enter 

into the system” key, the designer’s panel appears, 

as it is shown in the following figure. 

 
Figure 6.  Designer´s Panel 

The Designer’s panel in the lower- right side, 

shows a key called ”Rule Editor”. This key opens 

the Rules Editor window for the construction of the 

rules, and the report of the possible mistakes that 

can appear or the successful compilation of them.  

3.3. Description of the Computational Platform 

The Java language was used for developing the 

system. For our rule editor, we have built the 

following packages: Expert-Master Package, Antlr 

Package, Compiler Package and Interface Package. 

The Knowledge Base is implemented using 

Mysql. The compiler and the Rule Editor access it 

by the class mysql-connector-Java. It is used 

through the standard API of Java. In order to obtain 

Proceedings of the 6th WSEAS Int. Conf. on FUZZY SYSTEMS, Lisbon, Portugal, June 16-18, 2005 (pp23-28)



the connection, it is used the Drive Manager class 

of the Standard API, which locates the class 

com.mysql.jdbc. This connection is used through an 

object that implements the connection interface. 

 

4 Study Case for a Fuzzy System  

4.1. Problem definition:  

We like the construction of a Fuzzy system to 

determine the percentage of opening or closure of a 

control valve destined to maintain the pressure 

inside a tank under normal levels (see Figure 7). At 

the inside of the tank is generated a chemical 

reaction fed through pipes that transport 

components. These pipes do not have valves. 

 

Figure 7.  Physical system to be modeled. 

The only way of maintaining the levels of 

pressure around an operation point is allowing the 

escape of gasses generated by the reaction, if 

pressure is high; or retaining these gasses inside the 

tank, if pressure is low, using the control valve for 

this purpose. There are two sensors in the tank: one 

that measures the temperature and the other that 

measures the pressure.  

4.2. Modelling the problem using FCSs:  

The process was previously modelled based on 

the temperature and the pressure inside the tank 

(input variables to the system) and the percentage 

of opening and closure of the control valve (output 

variable of the system). Some of the Rules that 

characterize this system are:  

1. If Temperature is High AND Pressure is High 

Then Valve_aperture is Open 

2. If Temperature is High AND Pressure is Low 

Then Valve_aperture is Close  

3. If Temperature is High AND Pressure is 

Medium Then Valve_aperture is Maintained 

We will take only one of them to perform the 

tests to the Rules Editor Sub-system. The rule 

chosen is the number 3.  

Figure 8. Compilation errors Example detected by the 

compiler 

As it is shown in Figure 8, it was given a 

linguistic value to the temperature variable that it 

does not have (it is not in the Database). It is 

detected by the compiler, which sends an “error” 

message. 

 Figure 9. Compilation errors Example detected by the 

compiler 

Figure 9 shows that there is no “IS”, the word 

that separates the Fuzzy variable from its 

associated linguistic value (fuzzy set). That is 

why the error message indicates that was 

expected an “IS” before the linguistic value. 

 Figure 10. Compilation errors Example detected by the 

compiler 

Figure 10 shows the expectation of a blank 

between the “IS” and the linguistic value. As a 

consequence, it indicates an error, since “ishigh” is 

not a linguistic value. 

Figure 11. Compilation errors Example detected by the 

compiler 

Figure 11 attempts to save a rule without 

finishing it (only the premises side has been 

described). At this moment, it asks if we want to 

save the rule. When saying “yes” the compiler 

displays a message that says: Unexpected end of 

rule. 

Proceedings of the 6th WSEAS Int. Conf. on FUZZY SYSTEMS, Lisbon, Portugal, June 16-18, 2005 (pp23-28)



 Figure 12. Example of a rule deletion  

The rule highlighted with blue is the one that is 

expected to be deleted, as it is shown in Figure 12, 

the system demands: Are you sure you want to 

eliminate the rule?  

 Figure 13. Successful Compilation 

Figure 13 shows a message that says: 

“Successful Compilation”. This happens when the 

rules are well built. At the moment of pressing this 

choice, the rule is immediately saved in the 

Knowledge Base and added to the left panel located 

in the Rule Editor. 

 

5 Conclusions 
This paper has developed a Fuzzy Classifier 

Systems Compiler, which would make easier its use 

by those who are interested in them. This compiler 

works with rules such as “If a Then b”, where “a” 

represents the condition and “b” the action. For 

instance, a Fuzzy Classifier System rule could be:  

“If level is very high and pressure is medium, then 

level is medium”. 

The only operators used are “AND”, “OR” and 

the unary operator “NOT”.  

An advantage offered by the implementation of 

this system is that it uses an interface done in Java; 

based on a Rules Editor that presents to the user the 

possibility of editing any rule. This editor uses a 

menu bar where is possible to find all the 

components and Fuzzy variables needed to 

construct rules. 

The interface is helpful for the user at the 

moment of building rules. When editing rule 

through the menus, the possibility of mistakes is 

reduced, due to the fact that the interface adjusts 

continually the status of the menus. It is based on a 

lexical and syntax analysis of the rule that is being 

written. On the contrary, if the rules are written 

without using the menus, it is possible to commit 

mistakes. These are detected by the compiler when 

the rule is intended to save. 

Two types of grammars were built for the 

construction of rules, one for the Expert Systems 

and the other one the Fuzzy Classifier Systems. The 

ANTLR language was used for the programming of 

these grammars. This language is written in Java 

and generates Java, C++ and C#. 

The developed compiler only works with a very 

simplified format of rules. In the further works of 

the system, it could be proposed the enrichment of 

the grammar. Among these improvements could be 

included the following: the variables used should 

take diverse values in determined times (it is to say, 

introducing the temporal concept). In addition, it 

should be permitted that rules should not only use 

Fuzzy proportions of the type: “Fuzzy variable is 

linguistic value”, but also the use of the form: “The 

Fuzzy variable from the object is linguistic value”. 

For example, they could have the following shape: 

“The humidity of soil is high”. 

 

6 References 
 

[1] T. Parr, ANTLR: Parser Generator and 

Translator Generator. http://www.antlr.org. 

[2] J. Aguilar, F. Rivas, Introducción a las Técnicas 

de Computación Inteligente. MERITEC. 

Venezuela. 2001. 

[3]  D. Sáez, Fundamentos de Lógica Difusa. Univ. 

Quilmes, Argentina, 2002. 

[4] S. Kartalopoulos, Understanding Neural 

Networks and Fuzzy Logic: Based concepts, 

IEEE Press, USA, 1996. 

[5] A. Aho, V. Sethi, R. Ullman, Compiladores, 

Principios, técnicas y herramientas. Addison-

Wesley, Iberoamericana, 1990. 

[6] J. Tremblay, P. Sorenson. The theory and 

practice of Compiler Writing. Mc-Graw-Hill, 

USA, 1985. 

[7]  Y. Menolascina, J. Aguilar, F. Rivas, Diseño de 

un Compilador en java para Sistemas Expertos, 

to be Publicated, Conferencia Iberoamericana 

en Sistemas, Cibernética e Informática, 

Orlando, USA, July 2005. 

[8] J. Sanchez, J. Aguilar, F Rivas, Knowledge Base 

and Inference Motor for an Automated 

Management System for Developing Expert 

Systems and Fuzzy Classifiers, WSEAS 

Transactions on Systems Journal, No. 2, Vol, 3, 

pp. 682-687, 2004. 

[9] Bruce, Eckel. Thinking in Java Second. Edition. 
Pearson Education. 2000 

Proceedings of the 6th WSEAS Int. Conf. on FUZZY SYSTEMS, Lisbon, Portugal, June 16-18, 2005 (pp23-28)


