
 
 

Initialized RHPNN for Fault Detection in MEMS 
 

 
R.Asgary and  K.Mohammadi 

Department of Electrical Engineering 
Iran University of Science & Technology   

 
 
 

Abstract:-Micro Electro Mechanical Systems will 
soon usher in a new technological renaissance. Just 
as ICs brought the pocket calculator, PC, and video 
games, MEMS will provide a new set of products 
and markets. Learn about the state of the art, from 
inertial sensors to microfluidic devices[1]. 
Over the last few years, considerable effort has gone 
into the study of the failure mechanisms and 
reliability of MEMS. Although still very incomplete, 
our knowledge of the reliability issues relevant to 
MEMS is growing. One of the major problems in 
MEMS production is fault detection. After fault 
diagnosis, hardware or software methodscan be used 
to overcome it. Most of MEMS have nonlinear and 
complex models. So it is difficult or impossible to 
detect the faults by traditional methods, which are 
model-based. In this paper an initialized Robust 
Heteroscedastic Probabilistic Neural Network is 
used for fault detection in a RF MEMS. 
 
Key-Words: - Fault detection, intelligent method, 
Neural Networks, MEMS. 
 
1 Introduction 
Reliability of Micro Electro Mechanical Systems 
(MEMS) is a very young and fast-changing field. 
Fabrication of a MEMS System involves many new 
tools and methods, including design, testing, 
packaging and reliability issues. Especially the latter 
is often only the very last step that is considered in 
the development of new MEMS. The early phases 
are dominated by considerations of design, 
functionality and feasibility; not reliability [2]. 
One important reason for missing reliability data is 
that in view of the use of new materials and process, 
the material data, the know-how on failure modes, 
the means and the procedures to perform reliability 
tests and consequent failure analysis are often not 
present and unknown. 
The traditional approaches to fault detection and 
diagnosis involve the limit checking of some 

variables or the application of redundant sensors. 
More advanced methods rely on the spectral analysis 
of signals emanating from the machinery or on the 
comparison of the actual plant behavior to that 
expected on the basis of a mathematical model. The 
latter approaches include methods which are more 
deterministically framed and those formulated on 
more of a statistical basis, and parameter estimation. 
In methods based on mathematical models, the 
models obtained must be linear. To work with non-
linear systems, it is necessary to select a point and 
obtain a linearized model around it. 
In MEMS most of the parts are strictly non linear 
and finding a proper model is difficult or sometimes 
impossible. So using mathematical model for fault 
detection in MEMS is not a good idea. The 
constraints of this kind of model have motivated the 
development of artificial intelligent approaches.  
In this paper, we will use a probabilistic neural 
network for fault detection in MEMS. 
 
2 Fault detection methods 
The work on fault diagnosis in the AI community 
initially focused on the expert system or knowledge-
based approach where heuristics are applied to 
explicitly associate symptoms with fault hypothesis. 
The short coming of a pure expert system approach 
led to the development of model-based approaches 
based on qualitative models in the form of 
qualitative differential equations, signed digraphs, 
qualitative functional and structural models. Other 
approaches assume the availability of process 
history based data which are then used to develop 
neural network approaches [3-6]. 
NNs mimic intelligence. The learning or training 
nodes of neural networks is different from that of 
traditional statistical methods. 
The results of comparison between a model based 
fault detection, MBFD, method and a neural 
network fault detection and classification method is 
provided in Table1 [7]. 
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As we can see, both of them have their strengths and 
weaknesses. In MEMS usually there is not a proper 
and accurate model. Additionally, our knowledge 
about faults, their sources and effects is not 
complete. So usually there are novel or 
undetermined faults which are not considered in 
model. As a result neural network is a proper tool 
for fault detection and classification in MEMS. 
 

Criterion MBFD NN 
Novel faults Poor Fair 
Robustness to noise Fair Good 
Resolution Fair Good 
Adaptability Good Fair 
Range of application Good Bad 

Table1- Comparison of MBFD and NN 
 

Generally speaking, there are four types of neural 
networks: 
-Back propagation Neural Network (BPNN) 
-Probabilistic Neural Network (PNN) 
-Self-Organizing Mapping (SOM) 
-Radial Basis Function Neural Network (RBF) 
There are some drawbacks to BPNN and SOM. The 
BPNN requires a large number of training patterns 
to let network learn the underlying mapping 
function. The second problem is that the accuracy of 
the training patterns should not be a measure of 
whether a model is good or not. BPNN has a low 
reliability with novel data. 
SOM is known as a topological mapping algorithm, 
in which patterns with similar characteristics cluster 
together automatically. Output nodes will thus be 
ordered by competitive learning. The learning rate 
and neighbor size of SOM have to be optimally 
selected by experience, and a SOM net needs a large 
time to converge. 
In this paper Robust Heteroscedastic Probabilistic 
Neural Network is used for fault detection and 
classification in MEMS. We use LVQ method as an 
extra stage to determine initial center values. Results 
show that centers are arranged well and performance 
increases.  
 
3 Robust Heteroscedastic Probabilistic 
Neural Network 
A PNN classifies data by estimating the class 
conditional probability density functions, because 
the parameter of a PNN cannot be determined 
analytically. To do this it requires a training phase, 
followed by a validation phase, before it can be used 
in a testing phase. A PNN consists of a set of 
Gaussian kernel functions. The original PNN uses 
all the training patterns as the centers of the 

Gaussian kernel functions and assumes a common 
variance or covariance, which is named 
homoscedastic PNN. To avoid using a validation 
data set and to determine analytically the optimal 
common variance, a maximum likelihood procedure 
was applied to PNN training. On the other hand, the 
Gaussian kernel functions of a heteroscedastic PNN 
are uncorrelated and separate variance parameters 
are assumed. This type of PNN is more difficult to 
train using the ML training algorithm because of 
numerical difficulties. A robust method has been 
proposed to solve this numerical problem by using 
the jackknife, a robust statistical method, hence the 
term ‘robust heteroscedastic probabilistic neural 
networks’ [8]. 
The RHPNN is a four layer feedforward neural 
network based on the Parzen window estimator that 
realizes the Bayes classifier given by 
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Where X is a d-dimensional pattern, g(x) is the class 
index of x, the a priori probability of class j 
( kj ≤≤1 ) is jα and the conditional probability 
density function of class j is fj. The object of the 
RHPNN is to estimate the values of fj. This is done 
using a mixture of Gaussian kernel functions. 
RHPNN has been shown in Fig.1. In this figure two 
classes are shown. First class is considered for fault 
free and the second class for faulty patterns. There is 
only one fault free kernel because with only one 
Gaussian function all fault free patterns can be 
shown. There are many different faults and the 
distances between them are unknown, so in second 
class, more than one kernel is considered. The 
optimum number of kernels in second layer is the 
minimum that each kernel has at least one faulty 
pattern. The first layer of the PNN is the input layer. 
The second layer is divided into K groups of nodes, 
one group for each class.  
 

 
Fig.1- Four layer feed forward RHPNN 
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The ith kernel node in the jth group is described by a 
Gaussian function 
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Where Ci,j  is the mean vector and 2
, jiσ  is the 

variance. The third layer has k nodes; each node 
estimates fj, using a mixture of Gaussian kernels, 
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The fourth layer of the PNN makes the decision 
from (1). The PNN is heteroscedastic when each 
Gaussian kernel has its own variance. The centers, 
Ci,j, the variance, 2

, jiσ  and the mixing coefficients, 

ji ,β  have to be estimated from the training data. 
One assumption is  
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The EM algorithm has been used to train 
homoscedastic PNN’s. Each iteration of the 
algorithm consists of an expectation (E) followed by 
a maximization process (M). This algorithm 
converges to the ML estimate. For the 
heteroscedastic PNN, the EM algorithm frequently 
fails because of numerical difficulties. These 
problems have been overcome by using a jackknife, 
which is a robust statistical method. 
Suppose the training data is partitioned into k 
subsets, K
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is the total number of samples and Nj is the number 
of training samples for class j. The training 
algorithm is now expressed as follows, where 
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Step 1: Compute weights for iMm ≤≤1  , 

iNn ≤≤1  and Ki ≤≤1 . 
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Step 2: Update the parameters for iMm ≤≤1  and 
Ki ≤≤1  
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Similarly: 
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4  LVQ Algorithm 
Most partitional clustering algorithms focus on 
pursuing optimum partition of input space by 
iteratively updating the cluster center location, e.g. 
the popular fuzzy C-means and the K-means 
algorithms. One major drawback of the partitional 
clustering method is its sensitivity to the initial 
prototypes. Often two different choices of initial 
prototypes may result in quite different clustering 
results.  
Another problem exhibited by many clustering 
algorithms is how the number of clusters k for a 
given input data set is determined. In some 
applications, the k value is known a priori. In other 
cases it may be reasonable to expect cluster 
substructures at more than one k value. In this 
situation, it is necessary to identify the k value that 
gives the most plausible number of clusters in the 
data for the analysis at hand. 
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Training steps for determining voronoi vectors are 
as follows: 
Step1: Each node is associated with two resource 
centers, αj(t) and βj(t). Initially both counters are set 
to zero. Each input presentation (14) is used to 
determine the winning node j and update the weight 
vector thereof. 
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where dj = distance measure . Clearly only the 
winning node can update its weight vector. The 
counters αj(t) and βj(t) of the winner are increased by 
1 and dj

2, respectively.  
Step2: After λ(t) input representations, only the node 
with the maximum product resource mj is allowed to 
generate a new node. 

)16()()( ttm jjj βα ×=   
   Using (14) and (16), neural network in essence 
adopts a parallel competition principle. That is, (14) 
governs the input competition for determining the 
winning node, while (16) governs the competition 
for determining the Mother node. After a node 
generation, the initial resource counters of the son 
node share half the counters of its Mother node. The 
initial weight vector of the son node is given by: 

)17()11()()1(
Q
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Where Q is a large perturbation constant. 
A large Q constant (e.g. 2000) serves to make the 
weight vector of the new node slightly different 
from its mother node. The resource counters of all 
nodes then decreased by a factor of M(t)/Mf , where 
M(t) and Mf denote the current number of nodes and 
the maximum allowable number of nodes, 
respectively. Extra formulas can be found in Ref[9].    
 
5 Simulation Results 
 EM3DS is a MEMS simulator software, which has 
been used for fault simulation in RF MEMS. 20 
faults and one fault free pattern have been simulated 
in a RF low pass filter MEMS. These 20 faults 
consist of both digital and analog faults. Changing 
substrate resistance, magnetic and electric 
properties, shorts and opens, disconnections, 
connection between separate parts and some other 
faults have been simulated by software. The S 
parameters are calculated and used for training and 

testing RHPNN neural network. We have used a 2 
dimension data as input to neural network. The real 
and imaginary parts of S11 are 2-dimensional input 
data. The structure of the RF MEMS has been 
shown in Fig.2. 
 At first all the patterns in the pool are used to build 
up a model, which is able to group all the fault free 
and faulty circuits into n groups. The strategy for 
selecting the value of n is to ensure each kernel has 
at least one pattern of a fault free or faulty circuit, 
falling in it. The optimal n for RF low pass filter is 
7. One kernel is belonged to fault free class and the 
others are belonged to faulty classes. With the 
RHPNN it is not necessary to define a class label for 
each faulty pattern, which is a vector containing real 
and imaginary parts of S11 parameter. 
 For each fault 5 patterns and for fault free, 10 
patterns have been simulated, so total number of 
learning patterns is (20*5+10=110).  

 
Fig.2. RF low pass filter 

 
All the faulty patterns are labeled with the same 
number when training a RHPNN model. During 
training the RHPNN is able to cluster the patterns 
automatically. This is an advantage compared with 
some other neural networks. 
After training RHPNN, 50 faulty and fault free 
patterns have been applied to it. Table1 shows the 
details of misclassification when applying the 
RHPNN to this example.  
Another RHPNN is used for fault detection in the 
other MEMS. After training, 50 faulty and fault free 
patterns have been applied to it. Table 3 shows the 
details.  
 

 
Detected 
as Fault 

Detected as 
Fault free 

Correct fault 
detection percent

40 Faulty 
Pattern 37 3 %92.5 

10 Fault free
Pattern 
 

1 9 %90 

Total 50   %92 

Table2-RF low pass filter fault detection by RHPNN 
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Detected 
as Fault 

Detected as 
Fault free 

Correct fault 
detection percent

40 Faulty 
Pattern 38 2 %95 

10 Fault free
Pattern 
 

1 9 %80 

Total 50   %94 

Table3– RF low pass filter fault detection by initialized 
RHPNN 

 
5 Conclusion 
MEMS have a nonlinear and complex model. Most 
of the times, there are novel and unknown faults in 
MEMS too. So, finding a proper model is difficult 
and model-based fault detection methods can’t find 
the faults properly. 
In this paper, we proposed a probabilistic neural 
network for fault detection in MEMS. LVQ method 
has been used to convert input data to proper 
partitions. Then each voronoi vector is used as a 
kernel center in RHPNN. The results show that 
using LVQ method for center initialization, prevents 
local minima in training. In this method RHPNN 
trains faster and better. 
 Extra work is needed to define how the initial 
centers can be used for determining optimum center 
values and kernel numbers. 
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