DISCHARGE GEOMETRY BEHAVIOR IN NEGATIVE CORONA AT ATMOSPHERIC PRESSURE ON A CYLINDRICAL ARRANGEMENT

LILIANA ARÉVALO1*, MARLEY BECERRA2 FRANCISCO ROMÁN1
Electromagnetic Compatibility Research Group EMC – UN
1National University of Colombia, Bogotá, Colombia; 2 Uppsala University, Uppsala, Sweden.
Ciudad Universitaria Unidad Camilo Torres Bloque 4 Of. 702 Bogotá – Colombia
COLOMBIA - SWEDEN
http://www.emc-un.unal.edu.co

Abstract:
A numerical study of a negative corona discharge in air at atmospheric pressure in a non-uniform electric field: A cylindrical arrangement with earthed inner electrodes is presented. Results were obtained by solving numerically Poisson’s equation coupled with the continuity equations for electrons, positive, and negative ions, and considering the space – time evolution, as well as the electric field distribution and the current behaviour. The effects of ionization, attachment, recombination, electron diffusion are included. Calculations were made using a cylindrical discharge channel and a truncated cone. The calculated values were compared with the experimental results.

Key-Words:
Negative corona, Trichel pulse, continuity equations, Poisson equation, particles density, numerical techniques, field emission, ion bombardment, attachment, and recombination.

1. The theoretical “equations and parameters”
Many experimental results have shown that the discharge presents a filamentary geometry. However, some researchers have shown that the discharge geometry in low pressures is not quite filamentary. In order to determine and compare these possible discharge geometries, truncated cone geometry and cylindrical geometries were simulated. The theory is based on a classical “one – dimensional model” in which the continuity equations for electrons, positive ions, and negative ions are used to describe the axial discharge development:

\[
\frac{\partial N_e}{\partial t} = N_e \alpha [W_e] - N_e \eta [W_e] - N_e N_i \beta - \frac{\partial (N_e W_e)}{\partial x}
\]

(1)

\[
\frac{\partial N_p}{\partial t} = N_p \beta [W_p] - N_p N_e \beta - N_p N_i \beta - \frac{\partial (N_p W_p)}{\partial x}
\]

(2)

\[
\frac{\partial N_n}{\partial t} = N_n \eta [W_n] - N_n N_e \beta - \frac{\partial (N_n W_n)}{\partial x}
\]

(3)

Where \(t \) is time, \(x \) the distance from the cathode; \(N_e, N_p \) and \(Nn \) are respectively the electron, positive ion, negative ion, and \(We, Wp \) and \(Wn \) correspond to electron, positive ion and negative ion drift velocities. The material functions \(\alpha, \beta \) and \(\eta \) are the ionization, recombination and attachment respectively. Diffusion is not included, since its inclusion had negligible effect, as it was reported on the results of [5] and [7]. The continuity equations are coupled with Poisson’s equation via the charge density.

\[
\nabla^2 \phi = \frac{1}{\varepsilon} \left(N_e - N_p - N_n \right)
\]

(4)

Where: \(\varepsilon \) is the dielectric constant, \(e \) the electron charge and \(\phi \) the electric potential. The electric field, \(E \), is computed using \(E = -\nabla \phi \) (5)

The axial electric field \(E(x) \) is evaluated using the method of disks [7], which represent the discharge as a cylinder with a uniform radial distribution and variable axial charge distribution.

To start the computation at \(t_0 \), an electron density in Gaussian distribution was considered \((10^3 \, \text{cm}^{-3})\). A uniform mesh was used; the total number of axial mesh used to represent the 4 cm gap between the cathode and anode was 1500. Due to the computing time required, the mesh could not be finer. For the electric field calculation, a 4\(\mu \)m radial channel was simulated.

In this paper Sato’s equation [10] was used to calculate
the current \(I \) on the external circuit, due to the electrons and ions motion between the electrodes:

\[
I = \frac{ae}{V_e} \int \left(N_e W_e - N_i W_i - D \frac{\partial N_i}{\partial x} \right) E_i \cdot dx \quad (9)
\]

Here: \(V_e \) is the applied voltage, \(A \) is the cross sectional area of the discharge channel and \(E_L \) is the Laplacian electric field.

2. Experiments and Results [13, 14]

The Trichel pulses development results are presented for the air atmospheric conditions in Bogotá, Colombia. The experimental setup consisted of a coaxial cylindrical arrangement with a corona-electrode, placed on the inner cylinder electrode surface and perpendicular to the inner cylinder electrode axis. The corona-electrode was a brass rod terminated on a hyperbolical tip with 0.15mm radius of curvature. The detailed measured current is shown in Fig. 1.

For explain the existent differences in the external current circuit it is necessary to analyze the particles behavior in the different Trichel propagation stages: Space charge growth (13ns), slow Trichel propagation (40ns), Trichel pulse termination (79 and 150ns) and the Trichel pulse decay phase (254ns).

In the initial stage “Space charge growth” (Fig. 3) the particles density distributions are equal, they have identical magnitude and they are located in the same interelectrodic gap space. The unique difference is presented in the electric field magnitude and it is due to the different discharge radius. The electric field is inversely proportional to almost the square of the discharge radius, therefore in the conical geometry the discharge radius is minor than in the cylindrical geometry and that is why the electric field is higher in the conical geometry. Due to this electric field differences, the peak current is higher in the conical geometry than in the cylindrical.

In the slow Trichel propagation stage (40ns, Fig. 4.), the particles densities have the same magnitudes and location in the interelectrodic gap space. However, the electric field magnitude in the conical geometry is twice the electric field magnitude of the cylindrical discharge geometry. Due to this difference, the external current magnitude is higher in the conical geometry than in the cylindrical region.
For the Trichel pulse termination (79 and 150ns) stage, the external current behavior is different. The current in the conical discharge is at the beginning (~50ns) 3 times of the external current of the cylindrical geometry, and at the end (~150ns) of this stage is 5 times the current of the cylindrical geometry. Fig. 2 shows that for conical geometry the current starts to be constant in ~130ns. Fig. 5 shows that in 79ns the particles densities are still located in the same interelectrodic gap space and their magnitudes are equal, the unique difference between both calculations are the electric field that is higher for the conical geometry than the cylindrical discharge channel.

Meanwhile at 150ns (Fig. 6) particles densities start to become different. Positive ion density is located in the same interelectrodic gap space but it is higher for the conical discharge geometry (7.34 \cdot 10^{15} \text{ particles/m}^3) than in the cylindrical discharge channel (6.96 \cdot 10^{15} \text{ particles/m}^3). Negative ion density maximum is located in different interelectrodic gap regions: for the conical channel is 1.09 \cdot 10^{15} \text{ particles/m}^3 at 0.4mm from the cathode, and for the cylindrical channel is 1.18 \cdot 10^{15} \text{ particles/m}^3 at 0.3mm from the cathode. Electrons density for the conical channel is 2.98 \cdot 10^{14} \text{ particles/m}^3 at 6.5mm from the cathode and in the cylindrical discharge channel is 3.8 \cdot 10^{14} \text{ particles/m}^3 at 5mm from the cathode.

There are differences in the location of the particles densities due to the higher drift velocity of electrons and negative ions in the conical discharge channel. Electric field is higher in the conical discharge channel and negative ion and electron velocity are proportional to the
electric field magnitude. In Trichel pulse decay phase (Fig. 7), the ionic charge density is higher in the conical discharge channel than in the cylindrical discharge channel; therefore, the external circuit current is higher in the conical geometry than in the cylindrical geometry as Fig. 2 shows. Electron density is higher for the cylindrical discharge channel than the conical discharge channel. Due to the higher velocity of electrons in the conical channel, electron density has reduced faster in the interelectrodic gap space because it is moving in a fewer electric field in the same time instant than in the cylindrical discharge channel.

The current decays because a “dense plasma” region is formed. Between this plasma region and the cathode, positive ions dominated the space charge to form a cathode screening. Then, the decay of the current pulse can be considered as a formation process of an ionic charge density in the interelectrodic gap space.

The similar behavior of particles densities with the different discharge geometries demonstrates that electron growth (dominant part of the initial process) is developed in a small discharge radius, but this discharge radius does not grow with the interelectrodic gap distance because the measured current will be higher and it will have a different tail time.

4. Conclusion
In the coaxial arrangement, the geometrical discharge form is cylindrical; this means that the discharge is filamentary. The discharge geometry determines the particles density and then the external circuit magnitude. Additionally, it changes the electric field behavior and this will determine important discharge characteristics as particles velocity, attachment, first ionization, and excitation coefficients, etc.

The cylindrical discharge channel simulation explains adequately the rise and fall current pulse and the direct current component based on the theory. It has been demonstrated that a plasma region is responsible of the current fall and the direct component.

Acknowledgments
Authors would like to thank Universidad Nacional de Colombia and COLCIENCIAS for the financial support of the present project RC number 470 – 2003

References

