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Abstract. In this paper a novel sensorless 
adaptive neurofuzzy speed controller for 
induction motor derives is formulated. An 
artificial neural network (ANN) is adopted to 
estimate the motor speed and thus provide a 
sensorless speed estimator system. The 
performance of the proposed adaptive 
neurofuzzy speed controller is evaluated for a 
wide range of operating conditions for 
induction motor. These include startup, step 
changes in reference speed, unknown load 
torque and parameters variations. Obtained 
results show that the proposed ANN provides 
a very satisfactory speed estimation under the 
above mentioned operation conditions and 
also the sensorless adaptive neurofuzzy speed 
controller can achieve very robust and 
satisfactory performance and could be used to 
get the desired performance levels. The 
response time is also very fast despite the fact 
that the control strategy is based on bounded 
rationality. 

1. Introduction 
Variable speed motor drives play an 
important role in modern industries because 
they are utilized extensively in factory 
automation to store energy or to meet 
stringent load requirements. The use of 
variable speed motor drives is ever increasing 
and will maintain its momentum for several 
decades to come [1]. Among all different 
kinds of electric motor drives, the induction 
motor has become the subject of a large body 
of research in the field of electric motor 
drives. This is partly because the motor has 
an intrinsically simple and rugged structure 

and low manufacturing cost. Moreover, 
induction motor drives have the wide speed 
range, high efficiencies, and robustness [2]. 
All these merits make the motor a good 
candidate for the industrial applications. 
Sensorless control of induction motor drives 
is now receiving wide attention. The main 
reason is that the speed sensor spoils the 
ruggedness and simplicity of induction motor. 
In a hostile environment, speed sensors can 
not even be mounted. However, due to the 
high order and nonlinearity of the dynamics 
of an induction motor, estimation of the angle 
speed and rotor flux without the measurement 
of mechanical variables becomes a 
challenging problem [3]. The advantages of 
speed sensorless induction motor derives are 
reduced hardware complexity and lower cost, 
reduce size of derive machine, eliminate of 
sensor cable, better noise immunity, 
increasing reliability and less maintenance 
requirements [4]. Various speed control 
algorithms for induction motor derives have 
been devised in the literature. Among them, 
PID controllers [5], optimal [6], nonlinear 
[7,8] and robust [9,10] control strategies, and 
neural and/or fuzzy [3,11] approaches are to 
be mentioned. The purpose of this paper is to 
suggest another control approach, based on 
adaptive neurofuzzy controller to achieve 
faster response with reduced overshoot and 
rise time. Although the proposed method is a 
mathematical model based approach, it 
demonstrates some robustness towards model 
parameter variations due to the fact that the 
adaptive neurofuzzy based intelligent 
controllers are usually robust [12]. 
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Furthermore a multilayer perceptron (MLP) 
neural network with error bakpropagation 
learning algorithm is designed to estimate 
velocity in the whole speed range 
satisfactorily which will be detailed in the 
next sections. To evaluate the usefulness of 
the proposed method, some simulations are 
performed, obtained results show that the 
proposed method not only is robust in the 
presence of the parameter variations but also 
its response time is very fast despite the fact 
that the proposed control strategy is based on 
bounded rationality. The structure of this 
paper is as follows: 
Section 2 describes the induction motor and 
its mathematical model. In section 3, the 
whole structure of the proposed MLP neural 
network for speed estimation of induction 
motor is shown. Section 4 describes the 
structure of neuro-fuzzy controller and its 
application in speed control of induction 
motor. The performance of the proposed 
method under the whole range of operation 
conditions of induction motors is then shown 
in Section 5. Finally some conclusion and 
remarks is discussed in section 6. 

2. Mathematical Model of Induction 
motors 
Many schemes based on simplified motor 
models have been devised to sense the speed 
of the induction motor from measured 
terminal quantities for control purposes. In 
order to obtain an accurate dynamic 
representation of the motor speed, it is 
necessary to base the calculation on the 
coupled circuit equations of the motor [13]. 
Since the motor voltages and currents are 
measured in a stationary frame of reference, it 
is also convenient to express these equations 
in that stationary frame [13]. From the stator 
voltage equations in the stationary frame it is 
obtained [14]: 
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Whereλ  is the flux linkage; L  is the 
inductance; V is the voltage; R is the 

resistance; i  is the current, and 
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is the motor leakage coefficient. The 
subscripts r and s denotes the rotor and stator 
values respectively refereed to the stator, and 
the subscripts d and q denote the dq-axis 
components in the stationary reference frame. 
The rotor flux equations in the stationary 
frame are [14]: 
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Where rω  is the rotor electrical speed and 

r

r
r R

L
=τ  is the rotor time constant. The 

synchronous frequency in stationary frame is 
defined as follows [14]: 
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Substituting the equation (2) in the equation 
(3) it is obtained: 
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Then substituting the equations (3) in the 
equation (4), and finding rω  we obtain [14]: 

( )⎥⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−

+
=

dsqrqsdr
r

m

dr
qr

qr
dr

qrdr
r

ii
L

dt
d

dt
d

λλ
τ

λ
λ

λ
λ

λλ
ω 22

1  

 
(5) 

 
Therefore, given a complete knowledge of 
the motor parameters, the instantaneous speed 

rω  can be calculated from the equation (5) 
where the stator currents and voltages are 
known along with the machine parameters, 
and the rotor flux linkages are obtained from 
equation (1). But because of the existing 
some derivation and integration terms, this 
technique, specially in real time applications, 
is limited in its usefulness and is not very 
general. To overcome these difficulties the 
following idea was used in this paper: With 
substituting the equations (1) and (2) in the 
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(5) and doing some simplifications and 
discretizations we can obtain the motor speed 

rω  as a functions of the stator voltages and 
currents as follows:   
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So it is possible to estimate the speed of an 
induction motor in the whole speed range in 
another fashion by solving the equation (6) 
using an adaptive neural network (NN). Here 
a multilayer perceptron (MLP) neural 
network with error bakpropagation learning 
algorithm is designed to estimate velocity. 

3. Speed Estimation of Induction Motors 
Using NN 
Neural Networks are a family of intelligent 
algorithms which can be used for time series 
prediction, classification, control and 
identification. Neural networks have an 
ability to train with various parameter of 
induction motor. As a nonlinear function, 
they can be used for identifying the extremely 
nonlinear system parameters with high 
accuracy. Recently, the use of neural 
networks to identify and control nonlinear 
dynamic systems has been proposed because 
they can approximate a wide range of 
nonlinear functions to any desired degree of 
accuracy. Moreover, they have the 
advantages of extremely fast parallel 
computation, immunity from input harmonic 
ripples, and fault tolerance characteristics 
[15]. Also there have been some 
investigations into the application of NNs to 
power electronics and ac drives, including 
speed estimation. This technique gives a 
fairly good estimate of the speed and is robust 
to parameter variation [16]. However, the 
neural network speed estimator should be 
trained sufficiently with various patterns to 
get good performance. In this paper, a new 
speed estimation method of an induction 
motor is proposed. This method is based on 
the multilayer backpropagation neural 
network Back propagation algorithm is one of 
the most popular algorithms for training a 
network due to its success from both 
simplicity and applicability viewpoints. The 
algorithm consists of two phases. Training 

phase and recall phase. In the training phase, 
first, the weights of the network are randomly 
initialized. Then, the output of the network is 
calculated and compared to the desired value. 
In sequel, the error of the network is 
calculated and used to adjust the weights of 
the output layer. The generalized delta rule of 
MLP neural network is as follows [17]: 

)()()1()( nynnwnw ijjiji ηδα +−∆=∆  (7) 
Where η  is the learning rate, α  is the 
momentum parameter, jδ  is the local 
gradient of neuron j, iy  is the output signal of 
neuron i and )(nwji∆  is the weight correction 
connecting neuron i to neuron j. The basic 
problem in training a NN to recognize 
induction motor speed is that the functional 
relationship between the speed and stator 
parameters. As seen in equation (6) if the 
following terms are considered as inputs to 
NN, it should be able to estimate the speed 
with high accuracy:   

)1(),(),2(),1(),( −−− kVkVkVkVkV sdsdsqsqsq

)2( −kVsd , )3(),2(),1(),( −−− kikikiki sqsqsqsq

),(kisd )2(),1( −− kiki sdsd  and )3( −kisd     (8) 
As seen from equation (8) fourteen nodes are 
needed at the input layer. The computation 
time of the NN increases dramatically with 
the numbers of the nodes. Since all needed 
information for speed estimation is provided 
by equation (8), so we can use the MLP 
neural network consists of three layers with 
one hidden layer. The sigmoid functions are 
used at the hidden layer and the linear 
function is used at the output layer. Figure 1 
shows the internal structure of the NN. With 
assumption that the stator currents and 
voltages are known along with the machine 
parameters, the training algorithm of the NN 
speed estimator will be as follows.   
1- Initially randomize the MLP NN weights 
between -1 to +1. 
2- Obtain the stator voltages with two delays 
and currents with three delays. 
3- Calculate the error between target, )(krω  
and estimated output, )(ˆ krω . 
4- Adjust the weights of the NN. 
5- Calculate the output of the NN, )(ˆ krω  
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6- Repeat 2nd step. 
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Figure 1. The internal structure of the proposed NN. 

 

4- Design of Sensorless Speed Adaptive 
Neurofuzzy Controller for induction 
motors 
Neural networks and fuzzy logic are two 
complimentary techniques. Neural networks 
can learn from data; however, understanding 
the knowledge learned by neural networks 
has been difficult. To be more specific, it is 
usually difficult to develop an insight about 
the meaning associated with each neuron and 
each weight. Hence, neural networks are 
often viewed as a black box approach—we 
know what the box does, but not how the box 
does [18]. In contrast, fuzzy rule based model 
are easy to be understood because it uses 
linguistic terms and the structure of IF-THEN 
rules. Unlike neural networks, however, 
fuzzy logic by itself can not learn. The 
learning and identification of fuzzy logic 
systems need to adopt techniques from other 
areas, such as statistics, system identification. 
Since neural networks can learn, it is natural 
to marry these two techniques [17]. This 
marriage has created a new term—fuzzy 
neural networks (FNN). An FNN can be 
loosely defined as a system that uses a 
combination of fuzzy logic and neural 
networks. Two major approaches of trainable 
neurofuzzy models can be distinguished. The 
network based Takagi-Sugeno fuzzy 
inference system, which is used here, and the 
locally linear neurofuzzy model. It is easy to 
see that the locally linear model is equivalent 
to Takagi-Sugeno fuzzy model under certain 
conditions, and can be interpreted as an 

extension of normalized RBF network as 
well. The proposed adaptive neuro-fuzzy 
controller is a kind of unsupervised learning 
methods for autonomous agents to acquire 
action rules to adapt cue of reinforcemental 
reward and punishment. In this method the 
teacher of conventional supervised learning is 
replaced by an intelligent critic that assesses 
the performance of controller and evaluates 
the current states of system and generates 
proper reinforcement signal r. The controller 
should modify its characteristics so that the 
critic stress (r) is decreased. The performance 
of the critic can be compared with the 
performance of emotional hue in humans. In 
absence of an exact evaluation of the present 
state in term of the objective value function, 
reinforcement cues like stress, satisfaction 
and etc. can be guide our control action into 
changing in the right direction so as to 
produce desired response. Similarly, the critic 
evaluates the state of system and generates a 
signal called reinforcement signal (r). This 
signal is used to train and fine tune the main 
controller. Basically this critic acts as 
intelligent guide for the controller. The 
learning mechanism will be adapted the 
controller in order to satisfy critic and reduce 
its stress. This is a key idea of the proposed 
method in its using at the control systems. 
The structure of the adaptive neuro fuzzy 
controller is illustrated in figure 2. The 
mathematical description of this method is as 
follows:  
The Takagi-Sugeno fuzzy inference system is 
based on fuzzy rules of the following type: 
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Where Mi ...1=  and M is the number of 
fuzzy rules. puu ,...,1  are the inputs of 
network, each ijA  denotes the fuzzy set for 
input 

ju  in rule i and ( ).if  is a crisp function 
which is defined as a linear combination of 
inputs in most applications 

pipiii uuuy ωωωω ++++= Κ22110
   (10) 

Thus the output of this model can be 
calculated by 
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The out put of controller is in the following 
form: 
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Figure 2- Block Diagram of adaptive neurofuzzy 

controller 
 
Where n is number of controller fuzzy rules, 

iµ  is the firing strength of ith rules, u1 is the 
first and u2 is the second one for two input 
type controller. In this paper we choose 

eu =1  (speed error) and eu &=2  (speed error 
derivative). The neurofuzzy controller 
applied in here, as mentioned above, is a 
standard Sugeno fuzzy controller composed 
of four layers. In the first layer, all inputs are 
mapped into the range of [-1, +1]. In the 
second layer, the fuzzification process is 
performed using Gaussian membership 
functions with seven labels for each input. In 
layer 3, decision-making is done using Max-
Product law and defuzzification is carried out 
in the fourth layer in order to calculate the 
proper control signal using (13). ai, bi, ci are 
parameters to be determined via learning 
mechanism. Although the proposed FNN 
seems to have the same architecture with pure 
neural networks, they differ in two major 
ways: 
A. The nodes and links in an FNN are usually 
comprehensible and perform different 

operation because each of them corresponds 
to a specific component in fuzzy system. 
B. The nodes in an FNN are usually not fully 
connected to those in adjacent layers because 
the connections reflect the rule structure of 
the fuzzy system. 
The main purpose in the adaptive neurofuzzy 
based intelligent controller is to optimization 
an energy function. This aim can be extracted 
trough bellow energy function: 

2

2
1 krE =                                                   (14) 

Where k is a positive constant and r is a 
reinforcement signal. By minimizing this 
energy function, we can reduce the total 
stress of the system and satisfy all critics. 
With applying Newton gradient decent 
method the changes in weight must be 
followed by bellow general rule: 

i
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Where η  is the learning rate of the 
corresponding neurofuzzy controller. In order 
to calculate the RHS of (15), the chain rule is 
used: 
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Since with the incrimination of error, r will 
also be incremented and on the other hand, 
on-line calculation of 

e
r
∂
∂  is accompanied 

with measurement errors, thus producing 
unreliable results, we have 
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Which in our calculations only the sign of it 

(-1) is used. Also J
u
y
=

∂
∂ , where J is a 

Jacobean Matrix of the system. From (15) to 
(20), iw∆  will be calculated as follows: 
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Equation (21) is used for updating the 
learning parameters ai, bi and ci in (13), 
which is straightforward: 
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Fuzzy systems are very useful for critic 
modeling because it just gives us an 

approximate evaluation of current states of 
system. So we define it as fuzzy form. In this 
paper the inputs of critic have been defined as 
error signal and its derivative. The output of 
critic is a signal between [-1, 1] which shows 
the system performance. If this signal 
becomes zero, it means that the critic is 
satisfied by the performance of controller. 
Otherwise when it becomes larger, it shows 
the more stress and more dissatisfaction. 
Fuzzification and defuzzification have been 
performed by Gaussian membership 
functions with 5 labels for each input and 7 
labels for the output; deduction is performed 
by Max-Product law and for defuzzification 
the centroid law is used.  

 
 

Figure 3. Error and rate error input fuzzy sets membership 
function Figure 4. Output fuzzy sets membership function 

 
 
Figures 3 and 4 show the membership 
function sets for the inputs and output. 

 
Table 1: Rule base of the reinforcement signal r 

e  
∆e 

NL NS ZE PS PL 

PL ZE PS PM PL PL 

PS NS ZE PS PM PL 

ZE NM NS ZE PS PM 

NS NL NM NS ZE PS 

NL NL NL NM NS ZE 

PL: Positive Large 
PM: Positive Medium 
PS: Positive Small 
ZE: Zero 

NS: Negative Small 
NM: Negative Medium 

NL: Negative Large 

 

The fuzzy sets and rules base of this critic is 
shown in table 1. Figure 5 shows the Block 
diagram of speed-sensorless controller using 
adaptive neurofuzzy controller. 

5. Simulation Results 
In this section we illustrate the performance 
of the proposed neural network based 
sensorless adaptive fuzzy-neural controller by 
simulations using the MATLAB software 
package. The induction motor considered in 
this paper has the following data and 
parameters: 
3 phase, 380V, 15KW, 31A, 2 poles ,2895rpm 

rR =1.46Ω, sR =0.603Ω, lrL =4.72mH, 

lsL =4.72mH, mL =330.2mH 
As we mentioned before, we only use the 
speed error and its derivation as the inputs to 
the adaptive fuzzy scheme, each with seven 
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fuzzy sets on their ranges respectively. 
Because the states are two, the total numbers 
of fuzzy rules are 49. Using the algorithm 
developed in the previous sections, the 
dynamic performance of the observer-based 
sensorless adaptive fuzzy speed controller has 
been simulated for a wide range of operating 

conditions. The results of these tests will be 
detailed below. In addition, the important 
effects of parameter variations are examined 
in detail in order to verify the robustness of 
the system. In first simulation the speed 
command is set as 220rad/s.  
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Figure 5: Block diagram of speed-sensorless controller using adaptive neurofuzzy controller 

The speed response when the induction motor 
is started from standstill has been given in 
Fig. 6. As seen the settling time for the 
estimated speed to track the speed command 
is less than 0.1sec. Furthermore, the steady 
state error is almost zero without noticeable 

speed ripples. The speed response when the 
speed command is set as 70rad/s is given in 
Fig. 7. As seen from this figure the obtained 
result is satisfactory in terms of settling time, 
overshot and rise time. 
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Fig.6. Speed response when speed command is set as 220rad/s Fig. 7. Speed response when speed command is set as 70rad/s 
 
We evaluated the performance of the adaptive 
neurofuzzy controller with respect to step 
changes in reference speed. In this test, the 
motor is started from zero speed with a speed 
command of 100rad/s. The speed command 
changes to 200 rad/s at t = 0.1sec and 

150rad/s at t = 0.2 sec, finally the speed 
command changes to 50 rad/s at t = 0.3sec. 
Fig. 8 shows the behavior of the proposed 
controller under these step changes in speed 
command. It can be seen that the motor 
speeds exhibit smooth performance under 
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different reference speed, and a rapid 
transient response. Therefore in this test it is 
shown clearly that the adaptive neurofuzzy 
speed controller can track variable reference 
speed rapidly and smoothly. It is common 
that in many cases the induction motor may 
be operated with an unknown load torque. 
Thus, the performance of the developed 
scheme under unknown load torque is 
examined here. In this test, the external load 
torque is set to 5Nm during 0-0.2sec, 7Nm 
during 0.2-0.4sec, and 9Nm during 0.4-

0.6sec. The reference speed is 100rad/s and 
the initial estimated load torque is set as 
0Nm. In Fig. 9 we can see the speed 
responses under these large step changes in 
the load torque. We can see even with such 
fast changes in load the observer-based 
controller also exhibits very good 
performance with a fast response. Hence, the 
results above have shown the robustness of 
the adaptive neurofuzzy speed controller 
toward variable load torque, which is the 
common case in practice.  
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Fig. 8. Speed response when speed command is changed Fig. 9. Speed response when the external load torque is changed 

Now we test the robustness of the adaptive 
fuzzy-neural controller toward modeling 
errors. The mechanical parameters (J, B) can 
not always be obtained accurately and they 
may also vary during the induction motor 
operation. However, the uncertainties on the 
mechanical parameters can be well handled 
by the process of load torque estimation [3]. 
Thus in this section only the test under 
electrical parameter variations is done here. 
We illustrate the robustness toward electrical 
parameters by using rotor resistance as an 
example. During the induction motor 
operation, rR  will increase due to 
temperature rise. At the beginning of this test, 
the measured rR  =1.46Ω. Suppose this value 
changes to rR =2.46Ω when t= 0.1 sec. The 
speed command is 100 rad/s. The result of 
Fig. 10 shows the robustness against this 
resistance variation. It is shown in Fig. 10 
that the estimated speed can still track the 

reference speed very well without noticeable 
deviation. 
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Fig. 10. Speed response when the rotor resistance was 

changed at t=0.1 sec 
Hence in this test, we demonstrated that the 
developed NN-based sensorless adaptive 
fuzzy-neural network is robust to the 
electrical parameter variations. Meanwhile, 
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the mechanical parameter variations can be 
well handled by the proposed method as if 
they were due to load torque variations, 
which have been shown in the above. 6. 
6.Conclusion 
In this paper, a novel adaptive neurofuzzy 
controller based rotor speed estimation 
algorithm was presented for induction motor 
drives. Furthermore a multilayer perceptron 
(MLP) neural network with error 
bakpropagation learning algorithm was 
designed to estimate velocity in the whole 
speed range to provide a sensorless speed 
estimator system. To demonstrate the 
effectiveness and applicability of the 
proposed neurofuzzy controller based speed 
estimation algorithm, simulation results under 
the whole range of the operation conditions 
was presented, including low and high speed, 
transient conditions, and parameters 
variations as well. In conclusion, the ANF 
controller based scheme presented a very 
good performance under the whole range of 
operation conditions; include startup, low and 
high speed, low and high acceleration. 
Moreover it was also robustness to the 
parameters variations. 
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