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Abstract: Finding suitable jobs for US Navy sailors from time to time is an important and ever-
changing process. An Intelligent Distribution Agent (IDA) and particularly its constraint 
satisfaction module take up the challenge to automate the process. The constraint satisfaction 
module's main task is to provide the bulk of the decision making process in assigning sailors to 
new jobs in order to maximize Navy and sailor “happiness”. We propose Multilayer Perceptron 
neural network with structural learning in combination with several statistical criteria to aid IDA's 
constraint satisfaction module, which is also capable of learning high quality decision making 
over time. Data were taken from Navy databases and from surveys of Navy experts. Results show 
highly accurate classification and encouraging prediction. 
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1 Introduction 
IDA [1], is a “conscious” [2], [3] software 
agent [4], [5] that was built for the U.S. 
Navy by the Conscious Software Research 
Group at the University of Memphis. IDA 
was designed to play the role of Navy 
employees, called detailers, who assign 
sailors to new jobs from time to time. One 
of its modules, the constraint satisfaction 
module, was responsible for satisfying 
constraints to ensure the adherence to 
Navy policies and sailor preferences. The 
model employed a linear functional to 
assign fitness values to each candidate job 
for each candidate sailor. The functional 
yielded a value in [0,1] with higher values 
representing higher degree of “match” 
between the sailor and the job. Some of 
the constraints were soft, while others 
were hard. Soft constraints can be violated 
without invalidating the job. Associated 

with the soft constraints were functions 
which measured how well the constraints 
were satisfied for the sailor and the given 
job at the given time, and coefficients 
which measured how important the given 
constraint was relative to the others. The 
hard constraints cannot be violated. 

The process of using this method for 
decision making involves periodic tuning 
of the coefficients and the functions. A 
number of alternatives and modifications 
have been proposed, implemented and 
tested for large size real Navy domains [6-
8]. These techniques are optimization 
tools that yield an optimal solution or one 
which is nearly optimal. Most of these 
implementations were performed, by other 
researchers, years before the IDA project 
took shape and according to the Navy they 
often provided low rate of "matching" 
between sailors and jobs. This showed 
that standard operation research 
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techniques are not easily applicable to this 
real life problem if we are to preserve the 
format of the available data and the way 
detailers currently make decisions. High 
quality decision making is an important 
goal of the Navy but they need a working 
model that is capable of making decisions 
similarly to a human detailer under time 
pressure, uncertainty, and is able to 
learn/evolve over time as new situations 
arise and new standards are created. For 
such task, clearly, an intelligent agent 
(IDA) and a learning neural network is 
better suited than standard operation 
research tools. At this point we want to 
tune the functions and their coefficients in 
the constraint satisfaction module as 
opposed to trying to find an optimal 
solution for the decision making problem 
in general. Finally, detailers, as well as 
IDA, receive one problem at a time, and 
they try to find a job for one sailor at a 
time. Simultaneous job search for multiple 
sailors is not a current goal of the Navy or 
IDA. Instead, detailers (and IDA) try to 
find the “best” job for the “current” sailor 
all over the time. Our goal in this paper is 
to use neural networks and statistical 
methods to learn from Navy detailers, and 
to enhance decisions made by IDA's 
constraint satisfaction module. The 
functions for the soft constraints were set 
up semi-heuristically in consultation with 
Navy experts. We will assume that they 
are optimal, though future efforts will be 
made to verify this assumption. 

While human detailers can make 
judgments about job preferences for 
sailors, they are not always able to 
quantify such judgments through 
functions and coefficients. Using data 
collected periodically from human 
detailers, a neural network learns to make 
human-like decisions for job assignments. 
It is important to set up the functions and 
the coefficients in IDA to reflect the 

characteristics of the human decision 
making process. A neural network gives 
us more insight on what preferences are 
important to a detailer and how much. 
Moreover inevitable changes in the 
environment will result changes in the 
detailer's decisions, which could be 
learned with a neural network although 
with some delay. 

In this paper, we propose MLP with 
structural learning for achieving optimal 
decisions in software agents. The job 
assignment problem of other military 
branches may show certain similarities to 
that of the Navy, but the Navy's 
mandatory “Sea/Shore Rotation” policy 
makes it unique and perhaps, more 
challenging than other typical military, 
civilian, or industry types of job 
assignment problems.  Unlike in most job 
assignments, the Navy sends its sailors to 
short term sea and shore duties 
periodically, making the problem more 
constrained, time demanding, and 
challenging.  This was one of the reasons 
why we designed and implemented a 
complex, computationally expensive, 
human-like “conscious” software. This 
software is completely US Navy specific, 
but it can be easily modified to handle any 
other type of job assignment. 

In Section 2 we describe how the data 
were attained and formulated into the 
input of the neural network.  In Section 3 
we discuss FFNNs with Logistic 
Regression, performance function and 
statistical criteria of MLP Selection for 
best performance including learning 
algorithm selection. Section 4 presents 
some comparative analysis and numerical 
results. 
 

2 Data Acquisition 
The data was extracted from the Navy's 
Assignment Policy Management System's 
job and sailor databases. For the study one 
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particular community, the Aviation 
Support Equipment Technicians (AS) 
community was chosen. The databases 
contained 467 sailors and 167 possible 
jobs for the given community. From the 
more than 100 attributes in each database 
only those were selected which are 
important from the viewpoint of the 
constraint satisfaction: Eighteen attributes 
from the sailor database and six from the 
job database. For this study we chose 4 
soft constraints. 1277 matches passed the 
mandatory hard constraints, which were 
inserted into a new database. 

Table 1 shows the four soft constraints 
applied to the matches that satisfied the 
hard constraints and the functions which 
implement them. These functions measure 
degrees of satisfaction of matches 
between sailors and jobs, each subject to 
one soft constraint. 
Table 1. 
 Policy name Policy 
f1 Job Priority High priority jobs are more 

important to be filled 
f2 Sailor 

Location 
Preference 

It’s better to send a sailor 
where he/she wants to go 

f3 Paygrade Sailor’s paygrade should 
match the job’s paygrade 

f4 Geographic 
Location 

Certain moves are more 
preferable than others 

Output data (decisions) were acquired 
from an actual detailer in the form of 
Boolean answers for each possible match. 

3 Design of Neural Network 
One natural way the decision making 
problem in IDA can be addressed is via 
the tuning of the coefficients for the soft 
constraints. This will largely simplify the 
agent's architecture, and it saves on both 
running time and memory. Decision 
making can also be viewed as a 
classification problem, for which neural 
networks demonstrated to be a very 
suitable tool. Neural networks can learn to 
make human-like decisions, and would 

naturally follow any changes in the data 
set as the environment changes, 
eliminating the task of re-tuning the 
coefficients. 
 
3.1 Feedforward Neural Network with 
Logistic Regression 
We use a logistic regression model to tune 
the coefficients for the functions f1,...,f4 
for the soft constraints and evaluate their 
relative importance. The corresponding 
conditional probability of the occurrence 
of the job to be offered is 
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where g represents the logistic function 
evaluated at activation a.  Let w denote 
weight vector and f  the column vector of 
the importance functions: 

.  Then the “decision” is 
generated according to the logistic 
regression model. 
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The weight vector w can be adapted 
using FFNN topology [9], [10]. In the 
simplest case there is one input layer and 
one output logistic layer.  This is 
equivalent to the generalized linear 
regression model with logistic function.  
The estimated weights satisfy Eq.(3). 
∑ ≤≤=
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The linear combination of weights with 
inputs f1,...,f4 is a monotone function of 
conditional probability, as shown in 
Eq.(1) and Eq.(2), so the conditional 
probability of job to be offered can be 
monitored through the changing of the 
combination of weights with inputs 
f1,...,f4. The classification of decision can 
be achieved through the best threshold 
with the largest estimated conditional 
probability. The class prediction of an 
observation x from group y was 
determined by 
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To find the best threshold we used 
Receiver Operating Characteristic (ROC) 
to provide the percentage of detections 
correctly classified and the non-detections 
incorrectly classified. To do so we 
employed different thresholds with range 
in [0,1]. To improve the generalization 
performance and achieve the best 
classification, the MLP with structural 
learning was employed [11], [12]. 
 
3.2 Neural Network Selection 
Since the data coming from human 
decisions inevitably include vague and 
noisy components, efficient regularization 
techniques are necessary to improve the 
generalization performance of the FFNN. 
This involves network complexity 
adjustment and performance function 
modification. Network architectures with 
different degrees of complexity can be 
obtained through adapting the number of 
hidden nodes and partitioning the data 
into different sizes of training, cross-
validation and testing sets and using 
different types of activation functions. A 
performance function commonly used in 
regularization, instead of the sum of 
squared error (SSE) on the training set, is 
a loss function (mostly SSE) plus a 
penalty term [13]-[16]: 

∑+= )5(2wSSEJ λ
From another point of view, for achieving 
the optimal neural network structure for 
noisy data, structural learning has better 
generalization properties and usually use 
the following modified performance 
function [11], [12]: 

∑+= )6(|| wSSEJ λ
Yet we propose an alternative cost 
function, which includes a penalty term as 
follows: 

)7(/ NnSSEJ λ+=
λ is a penalty factor, n is the number of 

parameters in the network and N is the 
size of the input. This helps to minimize 
the number of parameters (optimize 
network structure) and improve the 
generalization performance. 

In our study the value of λ in Eq.(7) 
ranged from 0.01 to 1.0. Note that λ=0 
represents a case where we don't consider 
structural learning, and the cost function 
reduces into the sum of squared error. 
Normally the size of input samples should 
be chosen as large as possible in order to 
keep the residual as small as possible. Due 
to the cost of the large size samples, the 
input may not be chosen as large as 
desired. However, if the sample size is 
fixed then the penalty factor combined 
with the number of hidden nodes should 
be adjusted to minimize Eq.(7). 

Since n and N are discrete, they can not 
be optimized by taking partial derivatives 
of the Lagrange multiplier equation. For 
achieving the balance between data-fitting 
and model complexity from the proposed 
performance function in Eq.(7), we would 
also like to find the effective size of 
training samples included in the network 
and also the best number of hidden nodes 
for the one hidden layer case. Several 
statistical criteria were carried out for this 
model selection in order to find the best 
FFNN and for better generalization 
performance. We designed a two-factorial 
array to dynamically retrieve the best 
partition of the data into training, cross-
validation and testing sets with adapting 
the number of hidden nodes given the 
value of λ: 
• Mean Squared Error (MSE) 
• Correlation Coefficient (r) 
• Akaike Information Criteria (AIC) 
• Minimum Description Length (MDL) 

The MSE can be used to determine 
how well the predicted output fits the 
desired output.  More epochs generally 
provide higher correlation coefficient and 
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smaller MSE for training in our study.  To 
avoid overfitting and to improve 
generalization performance, training was 
stopped when the MSE of the cross-
validation set started to increase 
significantly. Sensitivity analyses were 
performed through multiple test runs from 
random starting points to decrease the 
chance of getting trapped in a local 
minimum and to find stable results. 

The network with the lowest AIC [17] 
or MDL [18] is considered to be the 
preferred network structure. The choice of 
the best network structure is based on the 
maximization of predictive capability, 
which is defined as the correct 
classification rate and the lowest cost 
given in Eq.(7). 
 

4 Data Analysis and Results 
For implementation we used a Matlab 6.1 
[19] environment with at least a 1GHz 
Pentium IV processor. For data 
acquisition and preprocessing we used 
SQL queries with SAS 9.0. 
 
4.1 Estimation of Coefficients 
FFNN with back-propagation with 
momentum with logistic regression gives 
the weight estimation for the four 
coefficients as follows: 0.316, 0.064, 
0.358, 0.262 respectively. Simultaneously, 
we got the conditional probability for 
decisions of each observation from Eq.(1).  
We chose the largest estimated logistic 
probability from each group as predicted 
value for decisions equal to 1 (job to be 
offered) if it was over threshold. The 
threshold was chosen to maximize 
performance and its value was 0.65. The 
corresponding correct classification rate 
was 91.22% for the testing set. This 
indicates a good performance. 
 
4.2 Neural Network for Decision 
Making 

Multilayer Perceptron with one hidden 
layer was tested using tansig and logsig 
activation functions for hidden and output 
layers respectively. Other activation 
functions were also used but did not 
perform as well. MLP with two hidden 
layers were also tested but no significant 
improvement was observed. Four different 
learning algorithms were applied for 
sensitivity analysis. For reliable results 
and to better approximate the 
generalization performance for prediction, 
each experiment was repeated 10 times 
with 10 different initial weights. Training 
was confined to 5000 epochs, but in most 
cases there were no significant 
improvement in the MSE after 1000 
epochs. The best MLP was obtained 
through structural learning where the 
number of hidden nodes ranged from 2 to 
20, while the training set size was setup as 
50%, 60%, 70%, 80% and 90% of the 
sample set. The cross-validation and 
testing sets each took the half of the rest. 
 

5 Conclusion 
High-quality decision making using 
optimum constraint satisfaction is an 
important goal of IDA, to aid the Navy to 
achieve the best possible sailor and Navy 
satisfaction performance. A number of 
neural networks with statistical criteria 
were applied to either improve the 
performance of the current way IDA 
handles constraint satisfaction or to come 
up with alternatives. IDA's constraint 
satisfaction module, neural networks and 
traditional statistical methods are 
complementary with one another. In this 
work we proposed and combined MLP 
with structural learning, statistical criteria, 
and a novel cost function, which provided 
us with the best MLP with one hidden 
layer. Coefficients for the existing IDA 
constraint satisfaction module were 
adapted via FFNN with logistic 
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regression. It is important to keep in mind 
that the coefficients have to be updated 
from time to time as well as online neural 
network trainings are necessary to comply 
with changing Navy policies and other 
environmental challenges. 
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