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Abstract: By combining the fuzzy theory and neural network technology, a fuzzy neural network (FNN) is 
proposed in this paper, whose learning algorithms are developed by steep algorithm. The excitation system 
model based on FNN is also derived in this paper, which can be used for on-line and off-line analysis and 
control respectively. The simulation results demonstrate that the FNN models can give precise estimation of 
practical excitation system. 
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1   Introduction 
The excitation system is vital to the generator unit. 
Excitation system with good performance can not 
only promise reliable and stable operation of 
generators but also improve the efficiency of the 
whole system, such as, improve the capacity of 
transmission lines and decrease its investment. With 
the rapid development of modern power electronic 
technologic and the successful application of 
auxiliary control in excitation system, such as power 
system stabilizer (PSS), linear optimized excitation 
controller and non-linear excitation controller, the 
research to the excitation gains more and more 
attention. 
 
However, lacking of proper models and parameters, 
the electric power system simulation cannot use 
models including excitation system but classical 
models with invariable generator transient potential 
to reflect the regulation effect of the excitation 
system. To use data gathered from field tests and 
modern system identification theory, the articles 
[1,2,3] obtain various excitation system models and 
their parameters for different practical system. 
However, a conclusion was drawn after lots of 
transient stability calculations: the discrepancies 
between the actual transient process and that 
described by classic model with invariable transient 
potential cannot be neglected. Thus, it is essential to 
build reliable and precise excitation model by field 
tests. 

 
Excitation systems are various in types, but their 
structure is almost similar. Excitation system 
generally includes these units: measurement, 
magnification, phase shift and firing, exciter and soft 

feed back [4,5]. In order to get the model of 
excitation system, firstly, the basic equations should 
be written according to the physical concept. Then, 
these equations should be converted to transfer 
function. Finally, the field test data and the system 
identification methods are used to develop the model 
of excitation. Several attempts have been made to 
obtain excitation system models from field tests. A 
second order static excitation system has been 
discussed in [6]. In [7], generalized least square 
approach is used to model an excitation system. 
Parameter estimation of a pumped storage power 
plant using stochastic approaches is discussed in [8]. 
Identification of exciter constants using weighted 
least squares is addressed in [9]. The necessity to 
represent the excitation system in full and close to 
the practical implementations for accurate and 
reliable results has been addressed in [10]. 
 
Further more, there are different kinds of 
nonlinearities in an excitation system [13]. Most of 
the electronic elements, such as bridges are 
nonlinear elements with limits. Other nonlinearities 
include main exciter saturation and bridge 
commutation drop. When an excitation system is 
modeled, these system nonlinearities should 
somehow be taken into account. If power systems 
simulation is only done with linear model, great 
error must exist. In the past decades, the 
microcomputer controlled excitation systems, which 
need accurate model, were widely used in large 
generators, and aroused a difficult problem for the 
parameter identification. The feasibility and 
necessity of a nonlinear structure for excitation 
system is discussed in [11]. In [12], the importance 
of modeling the limiters, such as under excitation 
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limiter, is addressed. Although some methods like 
"black box" approach are proposed, it is still 
difficult to distinguish the model’s orders. Thus it is 
better to put forward a new method that can deal 
with the non-linear function such as saturation, 
amplitude limit etc. 
 
Artificial neural network (ANN) [14, 15] is a 
nonlinear kinetics system, which consists of a large 
number of simple transaction units—neurons. ANN 
can transfer data parallel and distributed, and 
capable of self-adaptation, self-learning, non-linear 
mapping, robust under system noises and input 
noises. It is evident that the ANN is superior to the 
ordinary modeling methods in non-linear dynamic 
system modeling. But pure ANN has some defects. 
With the development of artificial intelligence, the 
combination of different methods can make use of 
their advantages and have better performance. This 
paper combines the fuzzy theory and artificial 
neural network into the fuzzy neural network (FNN), 
which improves the learning ability and modeling 
ability, and then uses the FNN to set up the model of 
the excitation system. 

 

 

2   Fuzzy neural networks 
The ANN has great advantages in dealing with 
nonlinear problems. But it cannot deal with uncertain 
problems, such as dealing with the weather condition, 
which have influence on the load prediction. 
However, using language rules to express the 
fuzziness and inexactness, the fuzzy theory can 
manage these inexact problems conveniently. On one 
hand, control method based on fuzzy theory, namely 
fuzzy control, achieves great breakthrough both in 
research and in practical field, since the fuzzy control 
is independent with the mathematic model of the 
target object and adverts the trouble of modeling. 
 
On the other hand, the determination of its member 
functions and control principle depends on people’s 
experience and knowledge, so the fuzzy control lacks 
the ability of self-learning and adapting. That is to 
say, in the kernel of fuzzy control, the control 
principle “if - then” described by language, the 
condition part (if part) and conclusion part (then part) 
are all dependent on expert’s experience and 
knowledge. This is the drawback of fuzzy control. 
But the artificial neural network has learning, 
association, fault tolerance, parallel processing, and 
just makes up the weakness of fuzzy control. Thus, 
the combination of artificial neural network and 
fuzzy control inevitably becomes the trend. Adaptive 

fuzzy system, a combination of the artificial neural 
network and fuzzy control, is presented below. 
 
An adaptive fuzzy system is a fuzzy logic system 
with learning algorithm. The fuzzy logic system is 
made up of a set of “if - then” rules, and the learning 
algorithm is to adjust the parameters of fuzzy logic 
system according to data. The adaptive fuzzy logic 
system is known as a fuzzy logic system that can 
generate fuzzy rules by learning. 

fuzzy reasoning

fuzzy rule set

fuzzy eliminatorfuzzy generator
x in U

fuzzy
set in U

fuzzy set
in V

y in V

 
Fig. 1 basic diagram for fuzzy logic system with 

fuzzy generator and fuzzy eliminator 
 
 

3  Back propagation Learning 
Algorithm of fuzzy-neural network 
Generally, fuzzy system is made up of 4 parts: fuzzy 
rule set, fuzzy reasoning, fuzzy generator and fuzzy 
eliminator as shown in Fig. 1. And different parts 
have different forms. 
 
3.1   Fuzzy rule set 
A fuzzy system is a set of if-then fuzzy rules: 
R: if x1 is F1, and L, and xn is Fn, then y is G      (1) 
Where, Fi and G is fuzzy set of Ui⊂R and V⊂R 
respectively. And x = (x1, L, xn)T and y both are 
language variables. Fuzzy logic set is the core of the 
fuzzy logic system. The function of other three parts 
of fuzzy logic system is to use these fuzzy rules to 
solve actual problems. 
 
3.2   Fuzzy reasoning 
According to fuzzy logic rules, fuzzy reasoning turns 
the fuzzy if-then rules into some mapping, i.e. maps 
the fuzzy set in U＝U1×…×Un to the fuzzy set in V. 
Multiplication rule is used here. 

)()()( 1
11

nFFFF
xxx l

n
ll

n
l µµµ ××=

××
L

L
       (2) 
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i
µ is the member function of xi in 

fuzzy set l
iF . 

 
3.3   Fuzzy generator 
The function of fuzzy generator is to map a certain 
point x=(x1, L,xn)T∈U to a fuzzy set A’ in U. 
Mapping method at least have two listed below: 
monotonic fuzzy generator and multi-value fuzzy 
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generator. Monotonic fuzzy generator is used here. 
 
3.4   Fuzzy eliminator 
Fuzzy eliminator is used to map a fuzzy set in V to a 
certain point y∈V. Central mean fuzzy eliminator is 
defined below: 
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Where, ly is the center of the fuzzy set Gl . 
The form of function )( iF xl

i
µ  should be chosen 

first, when choose learning algorithms for a fuzzy 
system. Generally, Gaussian function listed below 
can be used: 
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Where, l
ia ， l

ix  and l
iσ  are parameters which can 

be adjusted. 
 
In all, the fuzzy logic system discussed in this article 
consists of central mean fuzzy eliminator, 
multiplication reasoning rule, Monotonic fuzzy 
generator and Gaussian member function, and has 
the form shown below: 
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So, the fuzzy logic system described above can be 
expressed by feedforward network of three layers, as 
shown in Fig 2, then the back propagation Learning 
Algorithm can be used to adjust the parameter, such 
as ly ， l

ix ， l
iσ , in the network. 
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Fig. 2  the network expression of fuzzy system 
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The adjusting of parameter is shown below: 
Assume there are a set of input and output data 
（ xp,yp ）， p=1,…,Q (xp∈U⊆Rn, yp∈R). Back 
propagation learning algorithm is used to adjust the 
parameters of the network, and minimize the mean 
square error ET. 

[ ]2)(
2
1 pp yxfE −=                   (6)  

Q Q 2p p
T

p 1 p 1

1 1 1
m in E E f ( x ) y

Q Q 2= =

= = −⎡ ⎤⎣ ⎦∑ ∑      (7) 

If there are m fuzzy rules and n fuzzy sub-set, ly can 
be adjust by the equation below: 
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Where, l=1,2,…,m；η is learning factor. 
As shown in Fig. 2, the network output f (and E) only 
depend on ly  via a. The equation below can be: 
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Thus, the learning algorithm about ly will be: 
p
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Where, l=1,2,…, m；k=0,1,2,… . 
As well, l

ix  can be adjusted by the equation below: 
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And f (and E) is depending on l
ix  only in zl, so 

according to chain rule, equation below can be: 
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When substitute the equation into the equation (11), 
the learning algorithm of l

ix can be reached. 
As well, learning algorithm of l

iσ  can be got below: 
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Where, i=1,2,…,n；l=1,2,…,m；k=0,1,2,… . 
 
3.5 The initialization of fuzzy neural network 
Parameters of the fuzzy neural network above have 
physical meaning: The parameters l

ix  and l
iσ are 

corresponding to the center and the width of ix  in 
fuzzy set l. This is also the main factor of fuzzy 
neural network superior to pure neural network. As 
we all know, the neural network is generally 
initialized by generating data randomly. However, in 
fuzzy neural network, network parameters can be 
initialized by input and output data, according to the 
parameter’s physical meaning. 
 
To a fuzzy neural network with m fuzzy rules, first, 
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m data couples ( jx , j
dy ), (j=1,2,…,m) are used to 

initialized the parameters, i.e. 
j j

i i

j j j
i i i

j j
i

x x
1

[m ax( x ) m in( x )]
2 m

y y

σ

=

= −

=

          (14) 

Where, i=1,…,n；j=1,…,m. 
 
Then, the learning steps of fuzzy neural network are 
summarized below: 

1. Initialize the fuzzy neural network: set m fuzzy 
rules, error limit ε  and learning time N etc; 
2. Read in samples { }X t Y t t T( ), ( ) ,2, ,= 1 L , 
and initialize the network parameter according 
equation (9); 
3. Adjust network parameter according formula 
(10), (11) and (13); 
4. Calculate output error and total error 
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5. If both E and ET are less than the error limit ε , 
or the learn time reaches the given limit, save and 
exit. Otherwise, continues from step 3. 

 
 
4 FNN in excitation system modeling 
In this article, first, an excitation system model of 
real system is used to generate necessary data for 
modeling. Then, the FNN is used to modeling. The 
input and output of excitation system: the changing 
of terminal voltage of the generator⊿V(t) and 
Exciting potential Efd(t) and the delays are used to 
describe the dynamic characteristics of the excitation 
system. The transfer function of the excitation 
systems adopted is shows in Fig. 3. Correspondingly, 
the parameters are: Ks =1. 886, KA =26. 31, KE =2. 
649, KF =0. 688, Emax =4. 0, Emin =0. 0, Ts =0. 053, T1 
=3. 124, T2 =0. 386, T3 =4. 385, T4 =0. 072, TE =0. 
466, TF =0. 398. 
 
According to the space reconstruction theory of 
Takens, multi-layer feedback FNN is used to 
simulate power system dynamic characteristics. The 
equation of the model can be described below: 

( ) ( ( 1), ( 2), , ( ), ( ), ( 1), , ( ))y t f y t y t y t n U t U t U t m= − − − − −L L      (16) 
Where n is the input order, m is the output order. 
Conceptual diagram is shown as Fig. 4, the dotted 
line part is FNN. 
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Fig.3 Block diagram for excitation system 

 
The adopted excitation system is a Five-Order SISO 
system. The model can be expressed as: 

( ) ( ( ), ( 1), , ( 5), ( 1), ( 2), , ( 5))
fd fd fd fd

E t f V t V t V t E t E t E t= ∆ ∆ − ∆ − − − −L L      (17) 
The corresponding FNN has 11 inputs and 1 output. 
 
In order to training and check the performance of the 
FNN, first, three-phase short-circuit fault of a real 
transmission line is simulated. A fault occurs at 0.06s, 
three phases trip at 0.1s, failed to re-close in 1s, and 
trip again. The terminal voltage change curve of the 
generator is shown as Fig. 5(a). The output of the 
corresponding real excitation system shows as solid 
line in Fig. 5(b). The output of the corresponding 
FNN modeled excitation system is illustrated as 
dotted line in Fig. 5 (b). 

1Z −

1Z −

1Z−

1Z−

( )x t
FNN

( )y t

 
Fig. 4 Schematic diagram of FNN with time delays  

 
In order to examine the validity of the FNN model of 
excitation system, we change the fault types: 

a) Single-phase to ground fault takes place at 
0.06s，cuts off at 0.1s, single-phase re-closes 
at 0.7s successfully; 

b) Two-phase short-circuit fault takes place at 
0.06s, three phase trip at 0.12s, and re-close 
at 0.7s successfully.  

Solid curves are demonstrated in Fig. 6 as outputs of 
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the practical excitation system. The dotted lines are 
the outputs of FNN. It is evident that FNN model can 
simulate real excitation system very well. 
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(a) Terminal Voltage of Generator 
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Fig.5 Curves of real system and model output 
under three phase to ground fault 
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Fig. 6 Curves of real system and model output under 

different faults 
 

5   Conclusions 
The method using FNN to build excitation model is 
introduced in this paper. Combining the fuzzy theory 
and the neural network and uses of their advantages 
makes a kind of FNN. First, the learning algorithm of 
FNN is developed step by step. Then, FNN is utilized 
to build real generator’s excitation system model. 
The simulation results illustrate that the FNN model 
can simulate the factual excitation system accurately. 
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